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ABSTRACT

In this work, we study the problem of recursively recovering a time sequence of sparse

vectors, St, from measurements Mt := St +Lt that are corrupted by structured noise Lt which

is dense and can have large magnitude. The structure that we require is that Lt should lie in a

low dimensional subspace that is either fixed or changes “slowly enough”; and the eigenvalues of

its covariance matrix are “clustered”. We do not assume anything about the sequence of sparse

vectors, except a bound on their support size. Their support sets and their nonzero element

values may be either independent or correlated over time (usually in many applications they

are correlated). A key application where this problem occurs is in video surveillance where

the goal is to separate a slowly changing background (Lt) from moving foreground objects

(St) on-the-fly. To solve the above problem, we introduce a novel solution called Recursive

Projected Compressive Sensing (ReProCS). Under mild assumption, we show that ReProCS

can exactly recover the support set of St at all times; and the reconstruction errors of both

St and Lt are upper bounded by a time-invariant and small value at all times. ReProCS is

designed under the assumption that the subspace in which the most recent several Lt’s lie can

only grow over time. Therefore, it needs to assume a bound on the total number of subspace

changes, J . To address this limitation, we introduce a novel subspace estimation scheme called

cluster-PCA and we refer to the resulting algorithm as ReProCS with cluster-PCA (ReProCS-

cPCA). ReProCS-cPCA does not need a bound on J as long as the delay between subspace

change times increases in proportion to log J . An extra assumption that is needed though is

that the eigenvalues of the covariance matrix of Lt are sufficiently clustered. As a by-product,

at certain times, the basis vectors for the subspace in which the most recent several Lt’s lies

is also recovered.
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CHAPTER 1. Introduction

In this work, we study the problem of recovering a time sequence of sparse vectors, St, from

measurements Mt := St + Lt that are corrupted by large magnitude but dense and structured

noise, Lt. The structure that we require is that Lt should lie in a low dimensional subspace

that is either fixed or changes “slowly enough”; and the eigenvalues of its covariance matrix

are “clustered”. As a by-product, at certain times, we are also able to recover a basis matrix

for the subspace in which the recent several Lt’s lies. Thus, at these times, we also solve the

recursive robust principal components’ analysis (PCA) problem. For recursive robust PCA,

Lt is the signal of interest while St can be interpreted as the outlier (sparse noise).

A key application where the above problem occurs is in video analysis where the goal is

to separate a slowly changing background from moving foreground objects [1, 2]. If we stack

each frame as a column vector, the background is well modeled as lying in a low dimensional

subspace that may gradually change over time, while the moving foreground objects constitute

the sparse vectors [2,3] which change in a correlated fashion over time. Another key application

is online detection of brain activation patterns from functional MRI (fMRI) sequences. In this

case, the “active” region of the brain is the the correlated sparse vector.

Many of the older works on sparse recovery with structured noise study the case of sparse

recovery from large but sparse noise (outliers), e.g., [3–5]. However, here we are interested in

sparse recovery in large but low dimensional noise. On the other hand, most older works on

robust PCA cannot recover the outlier (St) when its nonzero entries have magnitude much

smaller than that of the low dimensional part (Lt) [1, 6, 7]. The main goal of this work is to

study sparse recovery and hence we do not discuss these older works here. Some recent works

on robust PCA such as [8, 9] assume that an entire measurement vector Mt is either an inlier
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(St is a zero vector) or an outlier (all entries of St can be nonzero), and a certain number of

Mt’s are inliers. These works also cannot be used when all St’s are nonzero but sparse.

In a series of recent works [2, 10], a new and elegant solution, which is referred to as

Principal Components’ Pursuit (PCP) in [2], has been proposed. It redefines batch robust

PCA as a problem of separating a low rank matrix, Lt := [L1, . . . , Lt], from a sparse matrix,

St := [S1, . . . , St], using the measurement matrix, Mt := [M1, . . . ,Mt] = Lt + St. Thus these

works can be interpreted as batch solutions to sparse recovery in large but low dimensional

noise. Other recent works that also study batch algorithms for recovering a sparse St and a

low rank Lt fromMt := Lt + St or from undersampled measurements include [11–20].

It was shown in [2] that, with high probability (w.h.p.), one can recover Lt and St exactly

by solving

min
L,S
‖L‖∗ + λ‖S‖1,vec subject to L+ S =Mt (1.1)

provided that (a) Lt is dense (its left and right singular vectors satisfy certain conditions); (b)

any element of the matrix St is nonzero w.p. ̺, and zero w.p. 1− ̺, independent of all others

(in particular, this means that the support sets of the different St’s are independent over time);

and (c) the rank of Lt and the support size of St are small enough. Here ‖B‖∗ is the nuclear

norm of B (sum of singular values of B) while ‖B‖1,vec is the ℓ1 norm of B seen as a long vector.

In most applications, it is fair to assume that the low dimensional part, Lt (background in case

of video) is dense. However, the assumption that the support of the sparse part (foreground in

case of video) is independent over time is often not valid. Foreground objects typically move in

a correlated fashion, and may even not move for a few frames. This results in St being sparse

and low rank.

The question then is, what can we do if Lt is low rank and dense, but St is sparse and may

also be low rank? In this case, without any extra information, in general, it is not possible to

separate St and Lt. Suppose that an initial short sequence of Lt’s is available. For example,

in the video application, it is often realistic to assume that an initial background-only training

sequence is available. Can we use this to do anything better?

One possible solution is as follows. We can compute the matrix containing the left singular
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vectors of the initial short training sequence, P̂0. This can be used to modify PCP as follows.

We solve

min
S
‖S‖1, subject to ‖(I − P̂0P̂

′
0)(Mt − S)‖F ≤ ǫ, (1.2)

where ‖.‖F is the Frobenius norm. This then becomes the standard ℓ1 minimization solution

for a batch sparse recovery problem in noise. As we show later in Lemma 3.3.2, denseness of

P̂0 ensures that the restricted isometry constant of (I − P̂0P̂
′
0) is small and hence St can be

recovered accurately by solving (1.2) as long as the “noise” it sees is small. Here the “noise”

is (I − P̂0P̂
′
0)Lt. This is small only if span(P̂0) approximately contains span(Lt), i.e. the

subspace spanned by the future background frames is an approximate subset of that of the

initial training dataset. This is unreasonable to expect in a long sequence. Even though the

change of subspace from one time instant to the next is usually “slow”, the net change over a

long sequence can be significant.

We introduced the Recursive Projected Compressive Sensing (ReProCS) algorithm that

provided one possible solution to this problem by using the extra piece of information that an

initial short sequence of Lt’s, or Lt’s in small noise, is available (which can be used to get an

accurate estimate of the subspace in which the initial Lt’s lie) and assuming slow subspace

change (as explained in Sec. 3.2). The key idea of ReProCS is as follows. At time t, assume that

a n× r matrix with orthonormal columns, P̂(t−1), is available with span(P̂(t−1)) ≈ span(Lt−1).

We project Mt perpendicular to span(P̂(t−1)). Because of slow subspace change, this cancels out

most of the contribution of Lt. Recovering St from the projected measurements then becomes

a classical sparse recovery / compressive sensing (CS) problem in small noise [21]. Under a

denseness assumption on span(Lt−1), one can show that St can be accurately recovered via ℓ1

minimization. Thus, Lt = Mt − St can also be recovered accurately. We use the estimates of

Lt in a projection-PCA based subspace estimation algorithm to update P̂(t).

ReProCS assumes that the subspace in which the most recent several Lt’s lie can only

grow over time. It assumes a model in which at every subspace change time, tj, some new

directions get added to this subspace. After every subspace change, it uses projection-PCA to

estimate the newly added subspace. As a result the rank of P̂(t) keeps increasing with every
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subspace change. Therefore, the number of effective measurements available for the CS step,

(n − rank(P̂(t−1))), keeps reducing. To keep this number large enough at all times, ReProCS

needs to assume a bound on the total number of subspace changes, J .

In practice, usually, the dimension of the subspace in which the most recent several Lt’s

lie typically remains roughly constant. A simple way to model this is to assume that at every

change time, tj , some new directions can get added and some existing directions can get deleted

from this subspace and to assume an upper bound on the difference between the total number

of added and deleted directions (the earlier model is a special case of this). We introduce

a novel approach called cluster-PCA that re-estimates the current subspace after the newly

added directions have been accurately estimated. This re-estimation step ensures that the

deleted directions have been “removed” from the new P̂(t). We refer to the resulting algorithm

as ReProCS-cPCA. We will see that ReProCS-cPCA does not need a bound on J as long as the

delay between subspace change times increases in proportion to log J . An extra assumption

that is needed though is that the eigenvalues of the covariance matrix of Lt are sufficiently

clustered at certain times as explained in Sec 5.1.

Under the clustering assumption and some other mild assumptions, we show that, w.h.p,

at all times, ReProCS-cPCA can exactly recover the support of St, and the reconstruction

errors of both St and Lt are upper bounded by a time invariant and small value. Moreover,

we show that the subspace recovery error decays roughly exponentially with every projection-

PCA step. The proof techniques developed in this work are very different from those used to

obtain performance guarantees in recent batch robust PCA works such as [2, 8–12, 16–20, 22].

Our proof utilizes sparse recovery results [21]; results from matrix perturbation theory (sin θ

theorem [23] and Weyl’s theorem [24]) and the matrix Hoeffding inequality [25].

Our result for ReProCS and ReProCS-cPCA do not assume any model on the sparse

vectors, St’s. In particular, it allows the support sets of the St’s to be either independent,

e.g. generated via the model of [2] (resulting in St being full rank w.h.p.), or correlated over

time (can result in St being low rank). The only thing that is required is that there be some

support changes every so often. We should point out that some of the other works that study
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the batch problem, e.g. [16], also allow St to be low rank.

A key difference of our work compared with most existing work analyzing finite sample

PCA, e.g. [26], and references therein, is that in these works, the noise/error in the observed

data is independent of the true (noise-free) data. However, in our case, because of how L̂t is

computed, the error et = Lt− L̂t is correlated with Lt. As a result the tools developed in these

earlier works cannot be used for our problem. This is the main reason we need to develop and

analyze projection-PCA based approaches for both subspace addition and deletion.

ReProCS and ReProCS-cPCA approaches are related to that of [27–29] in that all of these

first try to nullify the low dimensional signal by projecting the measurement vector into a

subspace perpendicular to that of the low dimensional signal, and then solve for the sparse

“error” vector. However, the big difference is that in all of these works the basis for the subspace

of the low dimensional signal is perfectly known. We study the case where the subspace is not

known and can change over time.

1.1 Notation

For a set T ⊆ {1, 2, . . . n}, we use |T | to denote its cardinality, i.e., the number of elements in

T . We use T c to denote its complement w.r.t. {1, 2, . . . n}, i.e. T c := {i ∈ {1, 2, . . . n} : i /∈ T}.

The notations T1 ⊆ T2 and T2 ⊇ T1 both mean that T1 is a subset of T2.

We use the notation [t1, t2] to denote the interval that contains t1 and t2, as well as all

integers between them, i.e. [t1, t2] := {t1, t1 + 1, · · · , t2}. The notation [Lt; t ∈ [t1, t2]] is used

to denote the matrix [Lt1 , Lt1+1, · · · , Lt2 ].

For a vector v, vi denotes the ith entry of v and vT denotes a vector consisting of the entries

of v indexed by T . We use ‖v‖p to denote the ℓp norm of v. The support of v, supp(v), is

the set of indices at which v is nonzero, supp(v) := {i : vi 6= 0}. We say that v is s-sparse if

|supp(v)| ≤ s.

For a tall matrix P , span(P ) denotes the subspace spanned by the column vectors of P .

For a matrix B, B′ denotes its transpose, and B† denotes its pseudo-inverse. For a matrix

with linearly independent columns, B† = (B′B)−1B′. We use ‖B‖2 := maxx 6=0 ‖Bx‖2/‖x‖2
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to denote the induced 2-norm of the matrix. Also, ‖B‖∗ is the nuclear norm and ‖B‖max

denotes the maximum over the absolute values of all its entries. We let σi(B) denote the ith

largest singular value of B. For a Hermitian matrix, B, we use the notation B
EV D
= UΛU ′ to

denote the eigenvalue decomposition (EVD) of B. Here U is an orthonormal matrix and Λ is

a diagonal matrix with entries arranged in non-increasing order. Also, we use λi(B) to denote

the ith largest eigenvalue of a Hermitian matrix B and we use λmax(B) and λmin(B) denote

its maximum and minimum eigenvalues. If B is Hermitian positive semi-definite (p.s.d.), then

λi(B) = σi(B). For Hermitian matrices B1 and B2, the notation B1 � B2 means that B2−B1

is p.s.d. Similarly, B1 � B2 means that B1 −B2 is p.s.d.

For a Hermitian matrix B, we have ‖B‖2 =
√

max(λ2
max(B), λ2

min(B)). Thus, for a b ≥ 0,

‖B‖2 ≤ b implies that −b ≤ λmin(B) ≤ λmax(B) ≤ b. If B is a Hermitian p.s.d. matrix, then

‖B‖2 = λmax(B).

The notation [.] denotes an empty matrix. We use I to denote an identity matrix. For

an m × n matrix B and an index set T ⊆ {1, 2, . . . n}, BT is the sub-matrix of B containing

columns with indices in the set T . Notice that BT = BIT . We use B \ BT to denote BT c

(here T c := {i ∈ {1, 2, · · · , n} : i /∈ T}). Given another matrix B2 of size m × n2, [B B2]

constructs a new matrix by concatenating matrices B and B2 in horizontal direction. Thus,

[(B \BT ) B2] = [BT c B2]. For any matrix B and sets T1, T2, (B)T1,T2 denotes the sub-matrix

containing the rows with indices in T1 and columns with indices in T2.

Definition 1.1.1 We refer to a tall matrix P as a basis matrix if it satisfies P ′P = I.

Definition 1.1.2 The s-restricted isometry constant (RIC) [27], δs, for an n × m matrix

Ψ is the smallest real number satisfying (1 − δs)‖x‖22 ≤ ‖ΨT x‖22 ≤ (1 + δs)‖x‖22 for all sets

T ⊆ {1, 2, . . . n} with |T | ≤ s and all real vectors x of length |T |.

It is easy to see that maxT :|T |≤s ‖(ΨT
′ΨT )−1‖2 ≤ 1

1−δs(Ψ) [27].

Definition 1.1.3 Let X and Z be two random variables (r.v.) and let B be a set of values

that Z can take.

1. We use Be to denote the event Z ∈ B, i.e. Be := {Z ∈ B}.
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2. The probability of event Be can be expressed as [30],

P(Be) := E[IB(Z)].

where

IB(Z) :=











1 if Z ∈ B

0 otherwise

is an indicator function of Z on the set B and E[IB(Z)] is the expectation of IB(Z).

3. Define P(Be|X) := E[IB(Z)|X] where E[IB(Z)|X] is the conditional expectation of IB(Z)

given X.

Finally, RHS refers to the right hand side of an equation or inequality; w.p. means “with

probability”; and w.h.p. means “with high probability”.

1.2 Dissertation Organization

The dissertation is organized as follows. In Chapter 2, we give the mathematical pre-

liminaries. In Chapter 3, we give the problem definition followed by the model and key as-

sumptions. We discuss the ReProCS algorithm and its performance guarantees in Chapter 4.

ReProCS with cluster-PCA and its performance grantees are presented in Chapter 5. Finally,

conclusions are summarized in Chapter 6. Many parts of these chapters are taken verbatim

from [31] [32] [33] [34].
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CHAPTER 2. Mathematical Preliminaries

In this section, we state certain results from the literature, or certain lemmas which follow

easily using these results, that will be used later. Parts of this chapter are taken verbatim

from [31] [32] [33] [34].

2.1 Compressive Sensing result

Compressed sensing is a signal processing technique for efficiently acquiring and recon-

structing a signal, by finding solutions to underdetermined linear systems. This takes advan-

tage of the signal’s sparseness or compressibility in some domain, allowing the entire signal

to be determined from relatively few measurements. The error bound for noisy compressive

sensing (CS) based on the RIC is as follows [21].

Theorem 2.1.1 ( [21]) Suppose we observe

y := Ψx + z

where z is the noise. Let x̂ be the solution to following problem

min
x
‖x‖1 subject to ‖y −Ψx‖2 ≤ ξ (2.1)

Assume that x is s-sparse, ‖z‖2 ≤ ξ, and δ2s(Ψ) < b(
√

2 − 1) with a 0 ≤ b < 1. Then the

solution of (2.1) obeys

‖x̂− x‖2 ≤ C1ξ

with C1 =
4
√

1+δ2s(Ψ)

1−(
√

2+1)δ2s(Ψ)
≤ 4

√
1+b(

√
2−1)

1−(
√

2+1)b(
√

2−1)
.

Remark 2.1.2 Notice that if b is small enough, C1 is a small constant but C1 > 1. For exam-

ple, if δ2s(Ψ) ≤ 0.15, then C1 ≤ 7. If C1ξ > ‖x‖2, the normalized reconstruction error bound
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would be greater than 1, making the result useless. Hence, (2.1) gives a small reconstruction

error bound only for the small noise case, i.e., the case where ‖z‖2 ≤ ξ ≪ ‖x‖2. In fact this is

true for most existing literature on CS and sparse recovery, with the exception of [3–5] (focus

on large but sparse noise) and [2,10].

2.2 Results from linear algebra

Davis and Kahan’s sin θ theorem [23] studies the rotation of eigenvectors by perturbation.

Theorem 2.2.1 (sin θ theorem [23]) Given two Hermitian matrices A and H satisfying

A =

[

E E⊥

]







A 0

0 A⊥













E′

E⊥
′






, H =

[

E E⊥

]







H B′

B H⊥













E′

E⊥
′







where [E E⊥] is an orthonormal matrix. Two ways of representing A+H are

A+H =

[

E E⊥

]







A + H B′

B A⊥ + H⊥













E′

E⊥
′






=

[

F F⊥

]







Λ 0

0 Λ⊥













F ′

F⊥
′







where [F F⊥] is another orthonormal matrix. Let R := (A+H)E −AE = HE. If λmin(A) >

λmax(Λ⊥), then

‖(I − FF ′)E‖2 ≤
‖R‖2

λmin(A)− λmax(Λ⊥)

The above result bounds the amount by which the two subspaces span(E) and span(F )

differ as a function of the norm of the perturbation ‖R‖2 and of the gap between the minimum

eigenvalue of A and the maximum eigenvalue of Λ⊥.

Next, we state Weyl’s theorem which bounds the eigenvalues of a perturbed Hermitian

matrix, followed by Ostrowski’s theorem.

Theorem 2.2.2 (Weyl [24]) Let A and H be two n × n Hermitian matrices. For each i =

1, 2, . . . , n we have

λi(A) + λmin(H) ≤ λi(A+H) ≤ λi(A) + λmax(H)
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Theorem 2.2.3 (Ostrowski [24]) Let H and W be n× n matrices, with H Hermitian and

W nonsingular. For each i = 1, 2 . . . n, there exists a positive real number θi such that

λmin(WW ′) ≤ θi ≤ λmax(WW ′) and λi(WHW ′) = θiλi(H). Therefore,

λmin(WHW ′) ≥ λmin(WW ′)λmin(H)

The following lemma proves some simple linear algebra facts.

Lemma 2.2.4 Suppose that P , P̂ and Q are three basis matrices. Also, P and P̂ are of the

same size, Q′P = 0 and ‖(I − P̂ P̂ ′)P‖2 = ζ∗. Then,

1. ‖(I − P̂ P̂ ′)PP ′‖2 = ‖(I − PP ′)P̂ P̂ ′‖2 = ‖(I − PP ′)P̂‖2 = ‖(I − P̂ P̂ ′)P‖2 = ζ∗

2. ‖PP ′ − P̂ P̂ ′‖2 ≤ 2‖(I − P̂ P̂ ′)P‖2 = 2ζ∗

3. ‖P̂ ′Q‖2 ≤ ζ∗

4.
√

1− ζ2∗ ≤ σi((I − P̂ P̂ ′)Q) ≤ 1

The proof is in the Appendix A.

2.3 Simple probability facts and matrix Hoeffding inequalities

The following lemma follows easily using Definition 1.1.3.

Lemma 2.3.1 Suppose that B is the set of values that the r.v.s X,Y can take. Suppose that

C is a set of values that the r.v. X can take. For a 0 ≤ p ≤ 1, if P(Be|X) ≥ p for all X ∈ C,

then P(Be|Ce) ≥ p as long as P(Ce) > 0.

The proof is in Appendix A.

The following lemma is an easy consequence of the chain rule of probability applied to a

contracting sequence of events.

Lemma 2.3.2 For a sequence of events Ee
0, E

e
1 , . . . E

e
m that satisfy Ee

0 ⊇ Ee
1 ⊇ Ee

2 · · · ⊇ Ee
m,

the following holds

P(Ee
m|Ee

0) =
m
∏

k=1

P(Ee
k|Ee

k−1).
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proof

P(Ee
m|Ee

0)=P(Ee
m, Ee

m−1, . . . E
e
0|Ee

0) =
m
∏

k=1

P(Ee
k|Ee

k−1, E
e
k−2, . . . E

e
0)

=
m
∏

k=1

P(Ee
k|Ee

k−1)

�

Next, we state the matrix Hoeffding inequality [25, Theorem 1.3] which gives tail bounds

for sums of independent random matrices.

Theorem 2.3.3 (Matrix Hoeffding for a zero mean Hermitian matrix [25]) Consider

a finite sequence {Zt} of independent, random, Hermitian matrices of size n×n, and let {At}

be a sequence of fixed Hermitian matrices. Assume that each random matrix satisfies (i)

P(Z2
t � A2

t ) = 1 and (ii) E(Zt) = 0. Then, for all ǫ > 0,

P(λmax(
∑

t

Zt) ≤ ǫ) ≥ 1− n exp(− ǫ2

8σ2
), where σ2 = ‖

∑

t

A2
t ‖2

The following two corollaries of Theorem 2.3.3 are easy to prove. The proofs are given in

the Appendix A.

Corollary 2.3.4 (Matrix Hoeffding for a nonzero mean Hermitian matrix) Given an

α-length sequence {Zt} of random Hermitian matrices of size n × n, a r.v. X, and a set C

of values that X can take. Assume that, for all X ∈ C, (i) Zt’s are conditionally independent

given X; (ii) P(b1I � Zt � b2I|X) = 1 and (iii) b3I � 1
α

∑

t E(Zt|X) � b4I. Then for all

ǫ > 0,

P(λmax(
1

α

∑

t

Zt) ≤ b4 + ǫ|X) ≥ 1− n exp(− αǫ2

8(b2 − b1)2
) for all X ∈

P(λmin(
1

α

∑

t

Zt) ≥ b3 − ǫ|X) ≥ 1− n exp(− αǫ2

8(b2 − b1)2
) for all X ∈ C

The proof is in the Appendix A.

Corollary 2.3.5 (Matrix Hoeffding for an arbitrary nonzero mean matrix) Given an

α-length sequence {Zt} of random Hermitian matrices of size n × n, a r.v. X, and a set C
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of values that X can take. Assume that, for all X ∈ C, (i) Zt’s are conditionally independent

given X; (ii) P(‖Zt‖2 ≤ b1|X) = 1 and (iii) ‖ 1
α

∑

t E(Zt|X)‖2 ≤ b2. Then, for all ǫ > 0,

P(‖ 1

α

∑

t

Zt‖2 ≤ b2 + ǫ|X) ≥ 1− (n1 + n2) exp(− αǫ2

32b2
1

) for all X ∈ C

The proof is in the Appendix A.
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CHAPTER 3. Problem Definition and Model Assumptions

In this chapter, we give the problem definition below followed by the model and key as-

sumptions. Parts of this chapter are taken verbatim from [31] [32] [33] [34].

3.1 Problem Definition

The measurement vector at time t, Mt, is an n dimensional vector which can be decomposed

as

Mt = Lt + St (3.1)

Here St is a sparse vector with support set size at most s and minimum magnitude of nonzero

values at least Smin. Lt is a dense but low dimensional vector, i.e. Lt = P(t)at where P(t) is an

n× r(t) basis matrix with r(t) ≪ n, that changes every so often. P(t) and at change according

to the model given below. We are given an accurate estimate of the subspace in which the

initial ttrain Lt’s lie, i.e. we are given a basis matrix P̂0 so that ‖(I − P̂0P̂
′
0)P0‖2 is small. Here

P0 is a basis matrix for span(Lttrain), i.e. span(P0) = span(Lttrain). Also, for the first ttrain time

instants, St is either zero or very small. The goal is

1. to estimate both St and Lt at each time t > ttrain, and

2. to estimate span(P(t)) every-so-often, i.e., update P̂(t) so that the subspace estimation

error, SE(t) := ‖(I − P̂(t)P̂
′
(t))P(t)‖2, is small.

Notation for St. Let Tt := {i : (St)i 6= 0} denote the support of St. Define

Smin := min
t>ttrain

min
i∈Tt

|(St)i| and s := max
t
|Tt|
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Assumption 3.1.1 (Model on Lt) We assume that Lt = P(t)at where P(t) and at satisfy

the following.

1. P(t) = Pj for all tj ≤ t < tj+1, j = 0, 1, 2 · · · J , where Pj is an n × rj basis matrix with

rj ≪ n and rj ≪ (tj+1 − tj). We let t0 = 0 and tJ+1 equal the sequence length. This

can be infinity also. At the change times, tj, Pj changes as Pj = [(Pj−1 \ Pj,old) Pj,new].

Here, Pj,new is an n × cj,new basis matrix with P ′
j,new

Pj−1 = 0 and Pj,old contains cj,old

columns of Pj−1. Thus rj = rj−1 + cj,new − cj,old. Also, 0 < ttrain ≤ t1. This model is

illustrated in Fig. 3.2.

2. There exists a constant cmax such that 0 ≤ cj,new ≤ cmax and
∑j

i=1(ci,new − ci,old) ≤ cmax

for all j. Thus, rj = r0 +
∑j

i=1(ci,new − ci,old).

3. at := P(t)
′Lt, is a rj length random variable (r.v.) with the following properties.

(a) at’s are mutually independent over t.

(b) at is a zero mean bounded r.v., i.e. E(at) = 0 and there exists a constant γ∗ such

that ‖at‖∞ ≤ γ∗ for all t.

(c) Its covariance matrix Λt := Cov[at] = E(ata
′
t) is diagonal with λ− := mint λmin(Λt) >

0 and λ+ := maxt λmax(Λt) <∞. Thus, the condition number of any Λt is bounded

by f := λ+

λ− .

Also, Pj and at satisfy the assumptions discussed in the next two subsections.

Definition 3.1.2 The following notation will be used frequently. Let Pj,∗ := P(tj−1) = Pj−1.

For t ∈ [tj , tj+1 − 1], let at,∗ := Pj,∗
′Lt = Pj−1

′Lt be the projection of Lt along Pj,∗ of which

at,∗,nz := (Pj−1 \ Pj,old)
′Lt is the nonzero part. Also, let at,new := P ′

j,new
Lt be the projection of

Lt along the newly added directions. Thus,

at,∗ =







at,∗,nz

0






and at =







at,∗,nz

at,new









www.manaraa.com

15

where 0 is a cj,old length zero vector (since Pj,old
′Lt = 0). Using the above, for t ∈ [tj , tj+1−1],

Lt can be rewritten as

Lt = Pjat = (Pj−1 \ Pj,old)at,∗,nz + Pj,newat,new = Pj,∗at,∗ + Pj,newat,new

and Λt can be split as

Λt =







(Λt)∗,nz 0

0 (Λt)new







where (Λt)∗,nz := Cov(at,∗,nz) and (Λt)new = Cov(at,new) are diagonal matrices.

3.2 Slow Subspace Change

By slow subspace change we mean all of the following.

1. First, the delay between consecutive subspace change times, tj+1 − tj, is large enough.

2. Second, the projection of Lt along the newly added directions, at,new, is initially small,

i.e. maxtj≤t<tj+α ‖at,new‖∞ ≤ γnew, with γnew ≪ γ∗ and γnew ≪ Smin, but can increase

gradually. We model this as follows. Split the interval [tj , tj+1−1] into α length periods.

We assume that

max
j

max
t∈[tj+(k−1)α,tj+kα−1]

‖at,new‖∞ ≤ γnew,k := min(vk−1γnew, γ∗)

for a v > 1 but not too large1.

3. Third, the number of newly added directions is small, i.e. cj,new ≤ cmax ≪ r0. This is

verified in Sec. 3.4.

3.3 Denseness assumption and its relation with RIC

For a tall n× r matrix, B, or for a n× 1 vector, B, we define the the denseness coefficient

as follows [32]:

κs(B) := max
|T |≤s

‖IT
′B‖2
‖B‖2

. (3.2)

1Small γnew and slowly increasing γnew,k is needed for the noise seen by the sparse recovery step to be small.
However, if γnew is zero or very small, it will be impossible to estimate the new subspace. This will not happen
in our model because γnew ≥ λ− > 0.
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Figure 3.1 The subspace change model.

where ‖.‖2 is the matrix or vector 2-norm respectively. Clearly, κs(B) ≤ 1. The denseness

coefficient measures the denseness (non-compressibility) of a vector B or of the columns of a

matrix B. For a vector, a small value indicates that its entries are spread out, i.e. it is a

dense vector. A large value indicates that it is compressible (approximately or exactly sparse).

Similarly, for a matrix B, a small value means that most (or all) of its columns are dense

vectors.

Remark 3.3.1 The following facts should be noted about κs(.).

1. For an n× r matrix B, κs(B) is a non-decreasing function of s.

2. For an n× r basis matrix B, κs(B) is a non-decreasing function of r = rank(B).

3. A loose bound on κs(B) obtained using triangle inequality is κs(B) ≤ sκ1(B).

4. For a basis matrix P , ‖P‖2 = 1 and hence κs(P ) = max|T |≤s ‖I ′T P‖2 and κs(PP ′) =

κs(P ). Thus, for any other basis matrix Q for which span(Q) = span(P ), κs(P ) = κs(Q).

Thus, κs(P ) is a property of span(P ), which is the subspace spanned by the columns of

P , and not of the actual entries of P .

The lemma below relates the denseness coefficient of a basis matrix P to the RIC of I−PP ′.

The proof is in the Appendix B.

Lemma 3.3.2 For an n× r basis matrix P (i.e P satisfying P ′P = I),

δs(I − PP ′) = κ2
s(P ).
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In other words, if P is dense enough (small κs), then the RIC of I −PP ′ is small. Thus, using

Theorem 2.1.1, all s-sparse vectors, St can be accurately recovered from yt := (I−PP ′)St +βt

if βt is small noise.

3.4 Model Verification

We now discuss model verification for real data. We experimented with two background

image sequence datasets. The first was a video of lake water motion. The second was a

video of window curtains moving due to the wind. The curtain sequence is available at

http://home.engineering.iastate.edu/~chenlu/ReProCS/Fig2.mp4. For this sequence,

the image size was n = 5120 and the number of images, tmax = 1755. The lake sequence is avail-

able at http://home.engineering.iastate.edu/~chenlu/ReProCS/ReProCS.htm (sequence

3). For this sequence, n = 6480 and the number of images, tmax = 1500. Any given back-

ground image sequence will never be exactly low rank, but only approximately so. Let the data

matrix with its empirical mean subtracted be Lfull. Thus Lfull is a n× tmax matrix. We first

“low-rankified” this dataset by computing the EVD of (1/tmax)LfullL′full; retaining the 90%

eigenvectors’ set (i.e. sorting eigenvalues in non-increasing order and retaining all eigenvectors

until the sum of the corresponding eigenvalues exceeded 90% of the sum of all eigenvalues);

and projecting the dataset into this subspace. To be precise, we computed Pfull as the matrix

containing these eigenvectors and we computed the low-rank matrix L = PfullP
′
fullLfull. Thus

L is a n×tmax matrix with rank(L) < min(n, tmax). The curtains dataset is of size 5120×1755,

but 90% of the energy is contained in only 34 directions, i.e. rank(L) = 34. The lake dataset is

of size 6480× 1500 but 90% of the energy is contained in only 14 directions, i.e. rank(L) = 14.

This indicates that both datasets are indeed approximately low rank.

In practical data, the subspace does not just change as simply as in the model given in

Sec. 3.1. There are also rotations of the new and existing eigen-directions at each time which

have not been modeled there. Moreover, with just one training sequence of a given type, it is

not possible to compute Cov(Lt) at each time t. Thus it is not possible to compute the delay

between subspace change times. The only thing we can do is to assume that there may be

http://home.engineering.iastate.edu/~chenlu/ReProCS/Fig2.mp4
http://home.engineering.iastate.edu/~chenlu/ReProCS/ReProCS.htm
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a change every d frames, and that during these d frames the data is stationary and ergodic,

and then estimate Cov(Lt) for this period using a time average. We proceeded as follows.

We took the first set of d frames, L1:d := [L1, L2 . . . Ld], estimated its covariance matrix as

(1/d)L1:dL′1:d and computed P0 as the 99.99% eigenvectors’ set. Also, we stored the lowest

retained eigenvalue and called it λ−. It is assumed that all directions with eigenvalues below

λ− are due to noise. Next, we picked the next set of d frames, Ld+1:2d := [Ld+1, Ld+2, . . . L2d];

projected them perpendicular to P0, i.e. computed L1,p = (I − P0P
′
0)Ld+1:2d; and computed

P1,new as the eigenvectors of (1/d)L1,pL′1,p with eigenvalues equal to or above λ−. Then,

P1 = [P0, P1,new]. For the third set of d frames, we repeated the above procedure, but with P0

replaced by P1 and obtained P2. A similar approach was repeated for each batch.

We used d = 150 for both the datasets. In each case, we computed r0 := rank(P0), and

cmax := maxj rank(Pj,new). For each batch of d frames, we also computed at,new := P ′
j,newLt,

at,∗ := P ′
j−1Lt and γ∗ := maxt ‖at‖∞. We got cmx = 3 and r0 = 8 for the lake sequence and

cmx = 5 and r0 = 29 for the curtain sequence. Thus the ratio cmx/r0 is sufficiently small in

both cases. In Fig 3.2, we plot ‖at,new‖∞/γ∗ for one 150-frame period of the curtain sequence

and for three 150-frame change periods of the lake sequence. If we take α = 40, we observe that

γnew := maxj maxtj≤t<tj+α ||at,new||∞ = 0.125γ∗ for the curtain sequence and γnew = 0.06γ∗

for the lake sequence, i.e. the projection along the new directions is small for the initial α

frames. Also, clearly, it increases slowly. In fact ‖at,new‖∞ ≤ max(vk−1γnew, γ∗) for all t ∈ Ij,k
also holds with v = 1.5 for the curtain sequence and v = 1.8 for the lake sequence.
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Figure 3.2 Verification of Slow Subspace Change.
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CHAPTER 4. Recursive Projected CS (ReProCS) and its Performance

Guarantees

ReProCS considers the case that cj,old = 0 for all j. Therefore, Pj = [Pj−1 Pj,new] and

rj = rj−1 + cj,new. In Sec. 4.1, we first explain the main idea of projection-PCA (proj-PCA).

In Sec 4.2, we explain the ReProCS algorithm and why it works. We summarize the Recursive

Projected CS (ReProCS) algorithm in Algorithm 2. It uses the following definition.

Definition 4.0.1 Define the time interval Ij,k := [tj + (k − 1)α, tj + kα− 1] for k = 1, . . . K

and Ij,K+1 := [tj + Kα, tj+1 − 1]. Here, K is the algorithm parameter in Algorithm 2.

We give the performance guarantees (Theorem 4.3.1) in Sec 4.3. The proof of Theorem 4.3.1

is given in Sec 4.4.4. In Sec 4.6, we show numerical experiments demonstrating Theorem 4.3.1,

as well as the comparisons with PCP. Parts of this chapter are taken verbatim from [31] [32].

4.1 The Projection-PCA algorithm

Algorithm 1 projection-PCA: Q← proj-PCA(D, P, r)

1. Projection: compute Dproj ← (I − PP ′)D

2. PCA: compute 1
αD
DprojDproj

′ EV D
=

[

QQ⊥
]

[

Λ 0

0 Λ⊥

] [

Q′

Q⊥
′

]

where Q is an n × r basis

matrix and αD is the number of columns in D.

Given a data matrix D, a basis matrix P and an integer r, projection-PCA (proj-PCA)

applies PCA on Dproj := (I −PP ′)D, i.e., it computes the top r eigenvectors (the eigenvectors

with the largest r eigenvalues) of 1
αD
DprojDproj

′. Here αD is the number of column vectors in

D. This is summarized in Algorithm 1.
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If P = [.], then projection-PCA reduces to standard PCA, i.e. it computes the top r

eigenvectors of 1
αD
DD′.

We should mention that the idea of projecting perpendicular to a partly estimated subspace

has been used in different contexts in past work [8, 35].

Algorithm 2 Recursive Projected CS (ReProCS)

Parameters: algorithm parameters: ξ, ω, α, K, model parameters: tj, r0, cj,new

(set as in Theorem 4.3.1)

Input: Mt, Output: Ŝt, L̂t, P̂(t)

Initialization: Given training sequence [Lt : 1 ≤ t ≤ ttrain], P̂0 ← proj-PCA([Lt : 1 ≤ t ≤
ttrain], [.], r0). Let P̂(t) ← P̂0. Let j ← 1, k ← 1. For t > ttrain, do the following:

1. Estimate Tt and St via Projected CS:

(a) Nullify most of Lt: compute Φ(t) ← I − P̂(t−1)P̂
′
(t−1), compute yt ← Φ(t)Mt

(b) Sparse Recovery: compute Ŝt,cs as the solution of minx ‖x‖1 s.t. ‖yt − Φ(t)x‖2 ≤ ξ

(c) Support Estimate: compute T̂t = {i : |(Ŝt,cs)i| > ω}
(d) LS Estimate of St: compute (Ŝt)T̂t

= ((Φt)T̂t
)†yt, (Ŝt)T̂ c

t
= 0

2. Estimate Lt: L̂t = Mt − Ŝt.

3. Update P̂(t) by Projection PCA

(a) If t = tj + kα− 1,

i. P̂j,new,k ← proj-PCA([L̂t : t ∈ Ij,k], P̂j−1, cj,new)

ii. set P̂(t) ← [P̂j−1 P̂j,new,k]; increment k ← k + 1.

Else

i. set P̂(t) ← P̂(t−1).

(b) If t = tj + Kα − 1, then set P̂j ← [P̂j−1 P̂j,new,K ]. Increment j ← j + 1. Reset

k ← 1.

4. Increment t← t + 1 and go to step 1.

4.2 The Recursive Projected CS (ReProCS) Algorithm

The key idea of ReProCS is as follows. Assume that the current basis matrix P(t) has been

accurately predicted using past estimates of Lt, i.e. we have P̂(t−1) with ‖(I−P̂(t−1)P̂
′
(t−1))P(t)‖2

small. We project the measurement vector, Mt, into the space perpendicular to P̂(t−1) to get
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the projected measurement vector yt := Φ(t)Mt where Φ(t) = I − P̂(t−1)P̂
′
(t−1) (step 1a). Since

the n×n projection matrix, Φ(t) has rank n−r∗ where r∗ = rank(P̂(t−1)), therefore yt has only

n− r∗ “effective” measurements1, even though its length is n. Notice that yt can be rewritten

as yt = Φ(t)St + βt where βt := Φ(t)Lt. Since ‖(I − P̂(t−1)P̂
′
(t−1))P(t)‖2 is small, the projection

nullifies most of the contribution of Lt and so the projected noise βt is small. Recovering the n

dimensional sparse vector St from yt now becomes a traditional sparse recovery or CS problem

in small noise [36–38]. We use ℓ1 minimization to recover it (step 1b). If the current basis

matrix P(t), and hence its estimate, P̂(t−1), is dense enough, then, by Lemma 3.3.2, the RIC of

Φ(t) is small enough. Using Theorem 2.1.1, this ensures that St can be accurately recovered

from yt.

By thresholding on the recovered St, one gets an estimate of its support (step 1c). By

computing a least squares (LS) estimate of St on the estimated support and setting it to zero

everywhere else (step 1d), we can get a more accurate final estimate, Ŝt, as first suggested

in [39]. This Ŝt is used to estimate Lt as L̂t = Mt − Ŝt. As we explain in the proof of Lemma

4.4.11, if the support estimation threshold, ω, is chosen appropriately, we can get exact support

recovery, i.e. T̂t = Tt. In this case, the error et := Ŝt − St = Lt − L̂t has the following simple

expression:

et = ITt(Φ(t))Tt

†βt = ITt [(Φ(t))
′
Tt

(Φ(t))Tt ]
−1ITt

′Φ(t)Lt (4.1)

The second equality follows because (Φ(t))T
′Φ(t) = (Φ(t)IT )′Φ(t) = IT

′Φ(t) for any set T .

Consider a t ∈ Ij,1. At this time, Lt satisfies Lt = Pj−1at,∗ + Pj,newat,new, P(t) = Pj =

[Pj−1, Pj,new], P̂(t−1) = P̂j−1 and so Φ(t) = Φj,0 := I − P̂j−1P̂
′
j−1. Let Φj,k := I − P̂j−1P̂

′
j−1 −

P̂j,new,kP̂
′
j,new,k (with P̂j,new,0 = [.]), ζj,k := ‖Φj,kPj,new‖2, κs,k := maxj κs(Φj,kPj,new), φk :=

maxj max|T |≤s ‖[(Φj,k)
′
T (Φj,k)T ]−1‖2, r∗ := r0 + (j − 1)cmax, and c := cmax. We assume that

the delay between change times is large enough so that by t = tj, P̂(t−1) = P̂j−1 is an accurate

enough estimate of Pj−1, i.e. ‖Φj,0Pj−1‖2 ≤ r∗ζ for a ζ small enough. Using ‖ITt
′Φj,0Pj−1‖2 ≤

‖Φj,0Pj−1‖2 ≤ r∗ζ, ‖ITt
′Φj,0Pnew‖2 ≤ κs,0‖Φj,0Pj,new‖2 and ζj,0 = ‖Φj,0Pnew‖2 ≤ 1, we get that

‖et‖2 ≤ φ0r∗ζ
√

r∗γ∗ + φ0κs,0
√

cγnew. The denseness assumption on Pj−1; ‖Φj,0Pj−1‖2 ≤ r∗ζ

1i.e. some r∗ entries of yt are linear combinations of the other n − r∗ entries
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and φ0 ≤ 1/(1 − δs(Φj,0)) ensure that φ0 is only slightly more than one (see Lemma 4.4.10).

If
√

ζ < 1/γ∗, the first term in the bound on ‖et‖2 is of the order of
√

ζ and hence negligible.

The denseness assumption on Φj,0Pj,new, whose columns span the currently unestimated part

of span(Pj,new), ensures that κs,0 is significantly less than one. As a result, φ0κs,0 < 1 and so

the error ‖et‖2 is of the order of
√

cγnew. Since γnew ≪ Smin and c is assumed to be small,

thus, ‖et‖2 = ‖St − Ŝt‖2 is small compared with ‖St‖2, i.e. St is recovered accurately. With

each projection PCA step, as we explain below, the error et becomes even smaller.

Since L̂t = Mt − Ŝt (step 2), et also satisfies et = Lt − L̂t. Thus, a small et means that

Lt is also recovered accurately. The estimated L̂t’s are used to obtain new estimates of Pj,new

every α frames for a total of Kα frames via projection PCA (step 3). We illustrate theK

times projection PCA algorithm in Fig 4.2. In the first projection PCA step, we get the first

estimate of Pj,new, P̂j,new,1. For the next α frame interval, P̂(t−1) = [P̂j−1, P̂j,new,1] and so

Φ(t) = Φj,1. Using this in the projected CS step reduces the projection noise, βt, and hence the

reconstruction error, et, for this interval, as long as γnew,k increases slowly enough. Smaller et

makes the perturbation seen by the second projection PCA step even smaller, thus resulting

in an improved second estimate P̂j,new,2. Within K updates (K chosen as given in Theorem

4.3.1), under mild assumptions, it can be shown that both ||et||2 and the subspace error drop

down to a constant times
√

ζ. At this time, we update P̂j as P̂j = [P̂j−1, P̂j,new,K ].

The reason standard PCA cannot be used and we need proj-PCA is because et = L̂t − Lt

is correlated with Lt. The discussion here also applies to recursive or online PCA which is

just a fast algorithm for computing standard PCA. In most existing works that analyze finite

sample PCA, e.g. see [26] and references therein, the noise or error in the “data” used for PCA

(here L̂t’s) is uncorrelated with the true values of the data (here Lt’s) and is zero mean. Thus,

when computing the eigenvectors of (1/α)
∑

t L̂tL̂
′
t, the dominant term of the perturbation,

(1/α)
∑

t L̂tL̂
′
t − (1/α)

∑

t LtL
′
t, is (1/α)

∑

t ete
′
t (the terms (1/α)

∑

t Lte
′
t and its transpose are

close to zero w.h.p. due to law of large numbers). By assuming that the error/noise et is small

enough, the perturbation can be made small enough.

However, for our problem, because et and Lt are correlated, the dominant terms in the
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(Subspace change time)

K times Projection PCA

First Projection PCA Second Projection PCA

K times Projection PCA

Figure 4.1 The K times projection PCA algorithm

perturbation seen by standard PCA will be (1/α)
∑

t Ltet
′ and its transpose. Since Lt can have

large magnitude, the bound on the perturbation will be large and this will create problems when

applying the sin θ theorem (Theorem 2.2.1) to bound the subspace error. On the other hand,

when using proj-PCA, Lt gets replaced by (I − P̂j−1P̂
′
j−1)Lt and this results in significantly

smaller perturbation.

4.3 Performance Guarantees

We state the performance guarantees of ReProCS in Theorem 4.3.1. The proof outline is

given in Sec. 4.4.3 and the actual proof is given in Sec. 4.4.4 the subsequent sections.

Theorem 4.3.1 Consider Algorithm 2. Let c := cmax and r := r0 + (J − 1)c. Assume that

Lt obeys the model given in Sec. 3.1 with cj,old = 0 and there are a total of J change times.

Assume also that the initial subspace estimate is accurate enough, i.e. ‖(I − P̂0P̂
′
0)P0‖ ≤ r0ζ,

for a ζ that satisfies

ζ ≤ min(
10−4

r2
,
1.5× 10−4

r2f
,

1

r3γ2∗
) where f :=

λ+

λ−

If the following conditions hold:

1. the algorithm parameters are set as ξ = ξ0(ζ), 7ρξ ≤ ω ≤ Smin − 7ρξ, K = K(ζ), α ≥

αadd(ζ), where ξ0(ζ), ρ,K(ζ), αadd(ζ) are defined in Definition 4.4.1.
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2. Pj−1, Pj,new, Dj,new,k := (I − P̂j−1P̂
′
j−1 − P̂j,new,kP̂

′
j,new,k)Pj,new and Qj,new,k := (I −

Pj,newPj,new
′)P̂j,new,k have dense enough columns, i.e.

κ2s(PJ−1) ≤ 0.3, max
j

κ2s(Pj,new) ≤ 0.15,

max
j

max
0≤k≤K

κ2s(Dj,new,k) ≤ 0.15, max
j

max
0≤k≤K

κ2s(Qj,new,k) ≤ 0.15

with P̂j,new,0 = [.] (empty matrix).

3. for a given value of Smin, the subspace change is slow enough, i.e.

max
j

(tj+1 − tj) > Kα,

max
j

max
tj+(k−1)α≤t<tj+kα

‖at,new‖∞ ≤ γnew,k := min(1.2k−1γnew, γ∗), for all k = 1, 2, . . . K,

14ρξ0(ζ) ≤ Smin,

4. the condition number of the covariance matrix of at,new averaged over t ∈ Ij,k, is bounded,

i.e.

gj,k ≤
√

2

where gj,k is defined in Definition 4.4.1.

then, with probability at least (1 − n−10), at all times, t, all of the following hold:

1. at all times, t,

T̂t = Tt and

‖et‖2 = ‖Lt − L̂t‖2 = ‖Ŝt − St‖2 ≤ 0.18
√

cγnew + 1.2
√

ζ(
√

r + 0.06
√

c).

2. the subspace error SE(t) := ‖(I − P̂(t)P̂
′
(t))P(t)‖2 satisfies

SE(t)≤











(r0 + (j − 1)c)ζ + 0.4cζ + 0.6k−1 if t ∈ Ij,k, k = 1, 2 . . . K

(r0 + jc)ζ if t ∈ Ij,K+1

≤











10−2
√

ζ + 0.6k−1 if t ∈ Ij,k, k = 1, 2 . . . K

10−2
√

ζ if t ∈ Ij,K+1
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3. the error et = Ŝt − St = Lt − L̂t satisfies the following at various times

‖et‖2≤











0.18
√

c0.72k−1γnew + 1.2(
√

r + 0.06
√

c)(r0 + (j − 1)c)ζγ∗ if t ∈ Ij,k, k = 1 · · ·K

1.2(r0 + jc)ζ
√

rγ∗ if t ∈ Ij,K+1

≤











0.18
√

c0.72k−1γnew + 1.2(
√

r + 0.06
√

c)
√

ζ if t ∈ Ij,k, k = 1, · · ·K

1.2
√

r
√

ζ if t ∈ Ij,K+1

This result says the following. Consider Algorithm 2. Assume that the initial subspace

error is small enough. If (a) the algorithm parameters are set appropriately; (b) the matrices

defining the previous subspace, the newly added subspace, and the currently unestimated part

of the newly added subspace are dense enough; (c) the subspace change is slow enough; and (d)

the condition number of the average covariance matrix of at,new is small enough, then, w.h.p.,

we will get exact support recovery at all times. Moreover, the sparse recovery error will always

be bounded by 0.18
√

cγnew plus a constant times
√

ζ. Since ζ is very small, γnew ≪ Smin, and

c is also small, the normalized reconstruction error for recovering St will be small at all times.

In the second conclusion, we bound the subspace estimation error, SE(t). When a subspace

change occurs, this error is initially bounded by one. The above result shows that, w.h.p.,

with each projection PCA step, this error decays exponentially and falls below 0.01
√

ζ within

K projection PCA steps. The third conclusion shows that, with each projection PCA step,

w.h.p., the sparse recovery error as well as the error in recovering Lt also decay in a similar

fashion.

We discuss the assumptions used by our result. First consider the choices of α and of K.

Notice that K = K(ζ) is larger if ζ is smaller. Also, αadd is inversely proportional to ζ. Thus,

if we want to achieve a smaller lowest error level, ζ, we need to compute projection PCA over

larger durations α and we need more number of projection PCA steps K.

Now consider the assumptions made on the model. We assume slow subspace change, i.e.

the delay between change times is large enough, ‖at,new‖∞ is initially below γnew and increases

gradually, and 14ρξ0 ≤ Smin which holds if cmax and γnew are small enough. Small cmax, small

initial at,new (i.e. small γnew) and its gradual increase are verified for real video data in Sec.

3.4. As explained there, one cannot estimate the delay between change times with just one
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video sequence of a particular type (need an ensemble) and hence the first assumption cannot

be verified.

We also assume that condition number of the average covariance matrix of at,new, is not

too large. This is an assumption made for simplicity. It can be removed if the newly added

eigenvalues can be separated into clusters so that the condition number of each cluster is

small (even though the overall condition number is large). This latter assumption is usually

true for real data. Under this assumption, we can use the cluster projection PCA approach

described in [34] for ReProCS with deletion. The idea is to use projection PCA to first only

recover the eigenvectors corresponding to the cluster with the largest eigenvalues; then project

perpendicular to these and P̂j−1 to recover the eigenvectors for the next cluster and so on.

Other than these, we assume the independence of at’s over time. This is done so that we

can use the matrix Hoeffding inequality [25, Theorem 1.3] to obtain high probability bounds

on the terms in the subspace error bound. In simulations, and in experiments with real data,

we are able to also deal with correlated at’s. In future work, it should be possible to replace

independence by a milder assumption, e.g. a random walk model on the at’s. In that case, at

tj +kα−1, one would compute the eigenvectors of (1/α)
∑

t∈Ij,k
Φj,0(L̂t−L̂t−1)(L̂t−L̂t−1)

′Φ′
j,0.

Moreover, one may need to use the matrix Azuma inequality [25, Theorem 7.1] instead of

Hoeffding to bound the terms in the subspace error bound.

Finally, we assume denseness of Pj−1 and Pj,new as well as of Dj,new,k and Qj,new,k in

condition 2. The denseness assumption of Pj−1 and Pj,new is a subset of the assumptions made

in earlier works [2]. It is valid for the video application because typically the changes of the

background sequence are global, e.g. due to illumination variation affecting the entire image or

due to textural changes such as water motion or tree leaves’ motion etc. Thus, most columns

of the matrix Lt are dense and consequently the same is true for any basis matrix for span(Lt).

Now consider denseness of Dj,new,k whose columns span the currently unestimated part of the

newly added subspace. Our proof actually only needs ‖ITt
′Dj,new,k‖2/‖Dj,new,k‖2 to be small

at every projection PCA time, t = tj + kα − 1. We attempted to verify this in simulations

done with a dense Pj and Pj,new. Except for the case of exactly constant support of St, in all
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other cases (including the case of very gradual support change, e.g. the models considered in

Sec 4.6), this ratio was small for most projection PCA times. We also saw that even if at a

few projection PCA times, this ratio was close to one, that just meant that, at those times,

the subspace error remained roughly equal to that at the previous time. As a result, a larger

K was required for the subspace error to become small enough. It did not mean that the

algorithm became unstable. It should be possible to use a similar idea to modify our result

as well. An analogous discussion applies also to Qj,new,k. In fact denseness of Qj,new,k is not

essential, it is possible to prove a slightly more complicated version of Theorem 4.3.1 without

assuming denseness of Qj,new,k.

4.4 Proof of Theorem 4.3.1

We first define the various quantities that will be used in the lemmas leading to the proof

of Theorem 4.3.1.

Definition 4.4.1 We define here the parameters used in Theorem 4.3.1.

1. Define K(ζ) :=
⌈

log(0.6cζ)
log 0.6

⌉

2. Define ξ0(ζ) :=
√

cγnew +
√

ζ(
√

r +
√

c)

3. Define ρ := maxt{κ1(Ŝt,cs − St)}. Notice that ρ ≤ 1.

4. Let K = K(ζ). We define αadd(ζ) as the smallest value of α so that (pK(α, ζ))KJ ≥

1− n−10, where pK(α, ζ) is defined in Lemma 4.4.16. We can compute an explicit value

for αadd by using the fact that for any x ≤ 1 and r ≥ 1, (1− x)r ≥ 1− rx. This gives us

αadd = ⌈(log 6KJ + 11 log n)
8 · 242

ζ2(λ−)2
max(min(1.24Kγ4

new, γ4
∗),

16

c2
, 4(0.186γ2

new

+0.0034γnew + 2.3)2)⌉

In words, αadd is the smallest value of the number of data points, α, needed for one

projection PCA step to ensure that Theorem 4.3.1 holds w.p. at least (1− n−10).
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5. Define the condition number of Cov(at,new) averaged over t ∈ Ij,k as

gj,k :=
λj,new,k

+

λj,new,k
− where

λj,new,k
+ :=λmax(

1

α

∑

t∈Ij,k

(Λt)new), λj,new,k
− := λmin(

1

α

∑

t∈Ij,k

(Λt)new),

Notice that λ− ≤ λj,new,k
− ≤ λj,new,k

+ ≤ λ+ and thus gj,k ≤ f = λ+/λ−. Recall that

Λt = Cov[at] = E(atat
′), (Λt)new = E(at,newa′t,new), λ− = mint λmin(Λt) and λ− =

maxt λmax(Λt).

Definition 4.4.2 We define the noise seen by the sparse recovery step at time t as

βt := ‖(I − P̂(t−1)P̂
′
(t−1))Lt‖2.

Also the reconstruction error of St is

et := Ŝt − St.

Here Ŝt is the final estimate of St after the LS step. Notice that et also satisfies et = Lt − L̂t.

Definition 4.4.3 We define the subspace estimation errors as follows. Recall that P̂j,new,0 = [.]

(empty matrix).

SE(t) := ‖(I − P̂(t)P̂
′
(t))P(t)‖2,

ζj,∗ := ‖(I − P̂j−1P̂
′
j−1)Pj−1‖2

ζj,k := ‖(I − P̂j−1P̂
′
j−1 − P̂j,new,kP̂

′
j,new,k)Pj,new‖2

Remark 4.4.4 Recall from the model given in Sec 3.1 and from Algorithm 2 that

1. P̂j,new,k is orthogonal to P̂j−1, i.e. P̂ ′
j,new,kP̂j−1 = 0

2. P̂j−1 := [P̂0, P̂1,new,K , . . . P̂j−1,new,K ] and Pj−1 := [P0, P1,new, . . . Pj−1,new]

3. for t ∈ Ij,k+1, P̂(t) = [P̂j−1, P̂j,new,k] and P(t) = Pj = [Pj−1, Pj,new].

4. Φ(t) := I − P̂(t−1)P̂
′
(t−1)
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From Definition 4.4.3 and the above, it is easy to see that

1. ζj,∗ ≤ ζ1,∗ +
∑j−1

j′=1 ζj′,K

2. SE(t) ≤ ζj,∗ + ζj,k ≤ ζ1,∗ +
∑j−1

j′=1 ζj′,K + ζj,k for t ∈ Ij,k+1.

Definition 4.4.5 Define the following

1. Φj,k, Φj,0 and φk

(a) Φj,k := I−P̂j−1P̂
′
j−1−P̂j,new,kP̂

′
j,new,k is the CS matrix for t ∈ Ij,k+1, i.e. Φ(t) = Φj,k

for this duration.

(b) Φj,0 := I− P̂j−1P̂
′
j−1 is the CS matrix for t ∈ Ij,1, i.e. Φ(t) = Φj,0 for this duration.

Φj,0 is also the matrix used for projection PCA for t ∈ [tj , tj+1 − 1].

(c) φk := maxj maxT :|T |≤s ‖((Φj,k)T
′(Φj,k)T )−1‖2. It is easy to see that φk ≤ 1

1−maxj δs(Φj,k) .

2. Dj,new,k, Dj,new and Dj,∗

(a) Dj,new,k := Φj,kPj,new. span(Dj,new,k) is the unestimated part of the newly added

subspace for any t ∈ Ij,k+1.

(b) Dj,new := Dj,new,0 = Φj,0Pj,new. span(Dj,new) is interpreted similarly for any t ∈

Ij,1.

(c) Dj,∗,k := Φj,kPj−1. span(Dj,∗,k) is the unestimated part of the existing subspace for

any t ∈ Ij,k

(d) Dj,∗ := Dj,∗,0 = Φj,0Pj−1. span(Dj,∗,k) is interpreted similarly for any t ∈ Ij,1

(e) Notice that ζj,0 = ‖Dj,new‖2, ζj,k = ‖Dj,new,k‖2, ζj,∗ = ‖Dj,∗‖2. Also, clearly,

‖Dj,∗,k‖2 ≤ ζj,∗.

Definition 4.4.6

1. Let Dj,new

QR
= Ej,newRj,new denote its QR decomposition. Here Ej,new is a basis matrix

while Rj,new is upper triangular.
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2. Let Ej,new,⊥ be a basis matrix for the orthogonal complement of span(Ej,new) = span(Dj,new).

To be precise, Ej,new,⊥ is a n× (n− cj,new) basis matrix that satisfies E′
j,new,⊥Ej,new = 0.

3. Using Ej,new and Ej,new,⊥, define Aj,k, Aj,k,⊥, Hj,k, Hj,k,⊥ and Bj,k as

Aj,k :=
1

α

∑

t∈Ij,k

Ej,new
′Φj,0LtLt

′Φj,0Ej,new

Aj,k,⊥ :=
1

α

∑

t∈Ij,k

Ej,new,⊥
′Φj,0LtLt

′Φj,0Ej,new,⊥

Hj,k :=
1

α

∑

t∈Ij,k

Ej,new
′Φj,0(etet

′ − Ltet
′ − etLt

′)Φj,0Ej,new

Hj,k,⊥ :=
1

α

∑

t∈Ij,k

Ej,new,⊥
′Φj,0(etet

′ − Ltet
′ − etLt

′)Φj,0Ej,new,⊥

Bj,k :=
1

α

∑

t∈Ij,k

Ej,new,⊥
′Φj,0L̂tL̂

′
tΦj,0Ej,new

=
1

α

∑

t∈Ij,k

Ej,new,⊥
′Φj,0(Lt − et)(Lt

′ − et
′)Φj,0Ej,new

4. Define

Aj,k :=

[

Ej,new Ej,new,⊥

]







Aj,k 0

0 Aj,k,⊥













Ej,new
′

Ej,new,⊥
′







Hj,k :=

[

Ej,new Ej,new,⊥

]







Hj,k Bj,k
′

Bj,k Hj,k,⊥













Ej,new
′

Ej,new,⊥
′







5. From the above, it is easy to see that

Aj,k +Hj,k =
1

α

∑

t∈Ij,k

Φj,0L̂tL̂
′
tΦj,0.

6. Recall from Algorithm 2 that Aj,k+Hj,k
EV D
=

[

P̂j,new,k P̂j,new,k,⊥

]







Λk 0

0 Λk,⊥













P̂ ′
j,new,k

P̂ ′
j,new,k,⊥







is the EVD of Aj,k +Hj,k. Here P̂j,new,k is a n× cj,new basis matrix.
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7. Using the above, Aj,k +Hj,k can be decomposed in two ways as follows.

Aj,k +Hj,k =

[

P̂j,new,k P̂j,new,k,⊥

]







Λk 0

0 Λk,⊥













P̂ ′
j,new,k

P̂ ′
j,new,k,⊥







=

[

Ej,new Ej,new,⊥

]







Aj,k + Hj,k B′
j,k

Bj,k Aj,k,⊥ + Hj,k,⊥













Ej,new
′

Ej,new,⊥
′







Remark 4.4.7 Thus, from the above definition, Hj,k = 1
α
[Φ0

∑

t(−Lte
′
t−etL

′
t +ete

′
t)Φ0 +F +

F ′] where F := Enew,⊥E′
new,⊥Φ0

∑

t LtL
′
tΦ0EnewE′

new = Enew,⊥E′
new,⊥(D∗,k−1at,∗)(D∗,k−1at,∗ +

Dnew,k−1at,new)′EnewE′
new. Since E[at,∗a′t,new] = 0, ‖ 1

α
F‖2 . r2ζ2λ+ w.h.p.

Definition 4.4.8 In the sequel, we let

1. r := r0 + (J − 1)cmax and c := cmax = maxj cj,new,

2. κs,∗ := maxj κs(Pj−1), κs,new := maxj κs(Pj,new), κs,k := maxj κs(Dj,new,k), κ̃s,k :=

maxj κs((I − Pj,newPj,new
′)P̂j,new,k), gk := maxj gj,k,

3. κ+
2s,∗ := 0.3, κ+

2s,new
:= 0.15, κ+

s := 0.15, κ̃+
2s := 0.15 and g+ :=

√
2 are the upper bounds

assumed in Theorem 4.3.1 on maxj κ2s(Pj), maxj κ2s(Pj,new), maxj maxk κs(Dj,new,k),

maxj κ2s(Qj,new,k) and maxj maxk gj,k respectively,

4. φ+ := 1.1735 is the upper bound on φk that follows using the above bounds (see Fact

C.2.1),

5. ζ+
j,∗ := r0ζ + (j − 1)cζ,

6. γnew,k := min(1.2k−1γnew, γ∗),

7. Pj,∗ := Pj−1 and P̂j,∗ := P̂j−1 (the point of doing this becomes clear in the next remark).

Remark 4.4.9 Notice that the subscript j always appears as the first subscript, while k is the

last one. At many places in this paper, we remove the subscript j for simplicity. Whenever

there is only one subscript, it refers to the value of k, e.g., Φ0 refers to Φj,0, P̂new,k refers to

P̂j,new,k. Also, P∗ := Pj−1 and P̂∗ := P̂j−1.
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4.4.1 Key Lemmas – 1: Bounding the RIC, sparse recovery and LS error and

subspace estimation error

At most places in this and the next section, we remove the subscript j for simplicity.

Whenever this is done, the convention stated in Remark 4.4.9 applies. Also recall that P∗ :=

Pj−1 and P̂∗ := P̂j−1.

We first bound the RIC of Φk in terms of the denseness coefficients of P∗ and Pnew and

their estimation errors. Next, we use these to bound the sparse recovery and LS error. Finally,

we obtain a bound on the subspace estimation error at the kth projection PCA step in terms

of the various matrices used in the decomposition of the Ak and Hk given in Definition 4.4.6.

4.4.1.1 Bounding the RIC of Φk

Lemma 4.4.10 (Bounding the RIC of Φk) Recall that ζ∗ := ‖(I−P̂∗P̂ ′
∗)P∗‖2. The follow-

ing hold.

1. Suppose that a basis matrix P can be split as P = [P1, P2] where P1 and P2 are also basis

matrices. Then κ2
s(P ) = maxT :|T |≤s ‖I ′T P‖22 ≤ κ2

s(P1) + κ2
s(P2).

2. κ2
s(P̂∗) ≤ κ2

s,∗ + 2ζ∗

3. κs(P̂new,k) ≤ κs,new + κ̃s,kζk + ζ∗

4. δs(Φ0) = κ2
s(P̂∗) ≤ κ2

s,∗ + 2ζ∗

5. δs(Φk) = κ2
s([P̂∗ P̂new,k]) ≤ κ2

s(P̂∗) + κ2
s(P̂new,k) ≤ κ2

s,∗ + 2ζ∗ + (κs,new + κ̃s,kζk + ζ∗)2 for

k ≥ 1

The proof is in Appendix C.1.

4.4.1.2 Bounding the Sparse Recovery and LS Error

Lemma 4.4.11 (Sparse Recovery and LS Error) Pick ζ as given in Theorem 4.3.1 and

let ζ+
∗ := (r0 + (j − 1)c)ζ. Let ξ0, ρ be as defined in Theorem 4.3.1. If

1. the first three conditions of Theorem 4.3.1 hold,
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2. ζ∗ ≤ ζ+
∗ := (r0 + (j − 1)c)ζ and

3. ζk−1 ≤ ζ+
k−1 ≤ 0.6k−1 + 0.4cζ

then for all t ∈ Ij,k, for any 1 ≤ k ≤ K + 1,

1. the projection noise βt satisfies ‖βt‖2 ≤
√

c0.72k−1γnew +
√

ζ(
√

r + 0.4
√

c) ≤ ξ0.

2. the CS error satisfies ‖Ŝt,cs − St‖2 ≤ 7ξ0.

3. T̂t = Tt

4. et satisfies

et = ITt [(Φk−1)Tt

′(Φk−1)Tt ]
−1ITt

′[(Φk−1P∗)at,∗ + Dnew,k−1at,new] (4.2)

and ‖et‖2 ≤ 0.18
√

c0.72k−1γnew + 1.2
√

ζ(
√

r + 0.06
√

c).

The proof is given in Appendix C.

4.4.1.3 Bounding the subspace estimation error

The following lemma is a consequence of Weyl’s theorem (Theorem 2.2.2) and the sin θ

theorem (Theorem 2.2.1)

Lemma 4.4.12 If λmin(Ak)− ‖Ak,⊥‖2 − ‖Hk‖2 > 0, then

ζk ≤
‖Rk‖2

λmin(Ak)− ‖Ak,⊥‖2 − ‖Hk‖2
≤ ‖Hk‖2

λmin(Ak)− ‖Ak,⊥‖2 − ‖Hk‖2
(4.3)

where Rk := HkEnew and Ak, Ak,⊥, Hk are defined in Definition 4.4.6.

The proof is given in Appendix C.4.

4.4.2 Key Lemmas – 2: Showing high probability exponential decay of the sub-

space error

At most places in this section, we remove the subscript j for ease of notation. We retain

it where needed, e.g. in defining the r.v. Xj,k and in defining and using the set Γj,k or for the

time interval Ij,k. Also, recall that P∗ := Pj−1 and P̂∗ := P̂j−1.
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In this section, in Lemmas 4.4.14 and 4.4.15, under the assumption that ζ+
k−1 ≤ 0.6k−1 +

0.4cζ and the four conditions of Theorem 4.3.1 hold, we obtain high probability bounds on

each of the terms of (4.3), conditioned on Γe
j,k−1. Under the same assumptions, Lemma 4.4.16

combines the result of these two lemmas with (4.3) to obtain a high probability upper bound

on ζk conditioned on Γe
j,k−1. We use this upper bound to define ζ+

k in Definition 4.4.17. In

Lemma 4.4.18, we show that, under the assumptions of Theorem 4.3.1 this ζ+
k indeed satisfies

ζ+
k ≤ 0.6k + 0.4cζ. Lemma 4.4.21 then combines the results of Lemmas 4.4.16 and 4.4.18 to

finally conclude that just under the assumptions of Theorem 4.3.1, ζk ≤ 0.6k + 0.4cζ w.h.p.

This, along with ζ∗ ≤ ζ+
∗ , implies that the subspace error decays exponentially towards a

constant times ζ w.h.p.

4.4.2.1 Obtaining high probability bounds on ζj,k

Recall that κ+
2s,∗ := 0.3 and κ+

2s,new = 0.15, κ̃+
2s = 0.15, κ+

s = 0.15 and g+ =
√

2 and

φ+ = 1.1735 < 1.2.

Definition 4.4.13 Define the following functions (we will see their utility in the lemmas that

follow):

C(x;u) := (1 +
2κ+

s√
1− u2

)κ+
s φ+x + (1 +

κ+
s√

1− u2
)(κ+

s )2(φ+)2x2

O(u, v) :=
uv

f
(1 + φ+ +

2φ+

√
1− u2

+ (φ+)2 + κ+
s

φ+(1 + φ+)√
1− u2

)

ginc(x;u, v,w) :=C(x;u)g+ + O(u, v)f + 0.125w

gdec(x;u, v,w) :=1− u2 − uv − 0.125w − ginc(x;u, v,w)

finc(x;u, v,w) :=
ginc(x;u, v,w)

gdec(x;u, v,w)

As we will see in the lemmas below, λ−
new,kginc(ζ

+
k−1; ζ

+
∗ , ζ+

j,∗f, cζ) is a high probability upper

bound on ‖Hk‖2, λ−
new,kgdec(ζ

+
k−1; ζ

+
∗ , ζ+

j,∗f, cζ) is a high probability lower bound for λmin(Ak)−

λmax(Ak,⊥)− ‖Hk‖2 and finc(ζ
+
k−1; ζ

+
∗ , ζ+

j,∗f, cζ) is a high probability upper bound for ζk.

Lemma 4.4.14 Consider t ∈ Ij,k. Pick ζ as given in Theorem 4.3.1 and let ζ+
∗ := (r0 + (j −

1)c)ζ. Assume that the four conditions of Theorem 4.3.1 hold. Also, assume that we are given
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a series of constants ζ+
k , with ζ+

0 = 1 and ζ+
k−1 ≤ 0.6k−1 + 0.4cζ. Define the random variable

Xj,k := [a1, a2, . . . atj+kα−1].

Define the set Γj,k as follows.

Γj,k := {Xj,k : ζ1,∗ ≤ r0ζ; ζj′,k′ ≤ ζ+
k′ , for all j′ = 1, 2, . . . j − 1, k′ = 0, 1, . . . K;

ζj,k′ ≤ ζ+
k′ , for all k′ = 0, 1, . . . k }

∩{Xj,k : T̂t = Tt and et satisfies (4.2) for all t ≤ tj + kα− 1}

Recall that Γe
j,k denotes the event Xj,k ∈ Γj,k. Assume that P(Γe

j,k−1) > 0 for all 1 ≤ k ≤ K+1.

Then,

1. for all 1 ≤ k ≤ K, P(λmin(Ak) ≥ λ−
new,k(1− (ζ+

∗ )2 − cζ
12 )|Γe

j,k−1) > 1− pa,k(α, ζ).

2. for all 1 ≤ k ≤ K, P(λmax(Ak,⊥) ≤ λ−
new,k((ζ

+
∗ )2f + cζ

24 )|Γe
j,k−1) > 1− pb(α, ζ) where

pa,k(α, ζ) := c exp(− αζ2(λ−)2

8 · 242 ·min(1.24kγ4
new, γ4∗)

) + c exp(−αc2ζ2(λ−)2

8 · 242 · 42
) and

pb(α, ζ) := (n− c) exp(−αc2ζ(λ−)2

8 · 242
). (4.4)

Lemma 4.4.15 Under the same settings as Lemma 4.4.14, for all k ≥ 1,

1. P({T̂t = Tt and et satisfies (4.2) for all t ∈ Ij,k}|Γe
j,k−1) = 1.

2. P(‖Hk‖2 ≤ λ−
new,kginc(ζ

+
k−1; ζ

+
∗ , ζ+

∗ f, cζ) |Γe
j,k−1) ≥ 1− pc(α, ζ) where

pc(α, ζ) :=n exp(− αζ2(λ−)2

8 · 242(0.0324γ2
new + 0.0072γnew + 0.0004)2

)

+n exp(− αζ2(λ−)2

32 · 242(0.06γ2
new + 0.0006γnew + 0.4)2

)

+n exp(− αζ2(λ−)2ǫ2

32 · 242(0.186γ2
new + 0.00034γnew + 2.3)2

)

The proofs of Lemma 4.4.14 and Lemma 4.4.15 are in Appendix C.

Lemma 4.4.16 Under the same settings as in Lemma 4.4.14, for all k ≥ 1,
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1. If gdec(ζ
+
k−1; ζ

+
∗ , ζ+

∗ f ; cζ) > 0, then P(ζk ≤ finc(ζ
+
k−1; ζ

+
∗ , ζ+

∗ f ; cζ)|Γe
j,k−1) ≥ pk(α, ζ)

where

pk(α, ζ) := 1− pa,k(α, ζ) − pb(α, ζ)− pc(α, ζ) (4.5)

This lemma is an easy consequence of Lemmas 4.4.12, 4.4.14 and 4.4.15.

Definition 4.4.17 Define the series {ζk
+}k=0,1,2,··· as follows

ζ+
0 := 1, ζ+

k := finc(ζk−1
+; ζ+

∗ , ζ+
∗ f, cζ), for k ≥ 1. (4.6)

Using Definition 4.4.13, an explicit expression for ζ+
k is

ζ+
k =

b + 0.125cζ

1− (ζ+
∗ )2 − (ζ+

∗ )2f − 0.25cζ − b
where b := Cκ+

s g+ζ+
k−1 + C̃(κ+

s )2g+(ζ+
k−1)

2 + C ′f(ζ+
∗ )2,

C := ( 2κ+
s φ+√

1−(ζ+
∗ )2

+ φ+), C ′ := ((φ+)2 + 2φ+√
1−(ζ+

∗ )2
+ 1 + φ+ + κ+

s φ+√
1−(ζ+

∗ )2
+ κ+

s (φ+)2√
1−(ζ+

∗ )2
), C̃ :=

((φ+)2 + κ+
s (φ+)2√
1−(ζ+

∗ )2
),

4.4.2.2 Exponential decay of the bounds on ζj,k

Lemma 4.4.18 (Exponential decay of ζ+
k ) Pick ζ as given in Theorem 4.3.1. Assume that

the four conditions of Theorem 4.3.1 hold. Define the series ζk
+ as in Definition 4.4.17. Then,

1. ζ+
0 = 1, ζ+

k ≤ ζ+
k−1 ≤ 0.5985 for all k ≥ 1.

2. ζ+
k ≤ 0.6k + 0.4cζ for all k ≥ 0

3. gdec(ζ
+
k ; ζ+

∗ , ζ+
∗ f, cζ) ≥ gdec(0.596; 10

−4 , 1.5 × 10−4, 10−4) > 0 for all k ≥ 1.

The proof is in Sec. C.8.

4.4.2.3 High probability exponential decay of ζj,k

Definition 4.4.19 Define the event Γ̃e
j,k for k = 1, 2 . . . K + 1 as

Γ̃e
j,k :=











{ζj,k ≤ ζ+
k , T̂t = Tt and et satisfies (4.2) for all t ∈ Ij,k} if 1 ≤ k ≤ K

{T̂t = Tt and et satisfies (4.2) for all t ∈ Ij,k} if k = K + 1
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Remark 4.4.20 Recall that the event Γe
j,k is defined in Lemma 4.4.14 as follows.

Γe
j,k := {ζ1,∗ ≤ r0ζ; ζj′,k′ ≤ ζ+

k′ , for all j′ = 1, 2, . . . j − 1, k′ = 0, 1, . . . K;

ζj,k′ ≤ ζ+
k′ , for all k′ = 0, 1, . . . k} ∩

{T̂t = Tt and et satisfies (4.2) for all t ≤ tj + kα− 1}

It is easy to see that Γe
j,k = Γe

j,k−1 ∩ Γ̃e
j,k for all 1 ≤ k ≤ K and Γe

j+1,0 = Γe
j,K ∩ Γ̃e

j,K+1. Thus,

Γe
j,k = Γe

j,0 ∩ Γ̃e
j,1 · · · ∩ Γ̃e

j,k and Γe
j+1,0 = Γe

j,0 ∩ (∩K+1
k=1 Γ̃e

j,k) = Γe
1,0 ∩ ∩j

j′=1(∩K+1
k=1 Γ̃e

j′,k).

Lemma 4.4.21 Pick ζ as given in Theorem 4.3.1. Let ζ+
j,∗ := (r0 +(j−1)c)ζ and let ζ+

k be as

defined in Definition 4.4.17. Also, let pk(α, ζ) be as defined in Lemma 4.4.16 and let the events

Γ̃e
j,k and Γe

j,k be as defined above in Definition 4.4.19 and Remark 4.4.20. Assume that the four

conditions of Theorem 4.3.1 hold. Also, assume that P(Γe
j,k−1) > 0 for all 1 ≤ k ≤ K + 1.

Then,

1. ζ+
k ≤ 0.6k + 0.4cζ for all 0 ≤ k ≤ K,

2. P(Γ̃e
j,k|Γe

j,k−1) ≥ pk(α, ζ) for all 1 ≤ k ≤ K and

3. P(Γ̃e
j,K+1|Γe

j,K) = 1.

The proof is in Appendix C.

4.4.3 Proof Outline for Theorem 4.3.1

The proof of the theorem is an easy consequence of the following lemmas.

1. In Lemma 4.4.10, we use Lemma 3.3.2 to bound the RIC for the CS measurement matri-

ces, i.e. we bound δs(Φj,0) and δs(Φj,k), in terms of the denseness coefficients κs(Pj−1)

and κs(Pj,new) and the subspace errors ζj,∗ and ζj,k.

2. Let the bound on ζj,∗ be ζ+
j,∗ = (r0 + (j − 1)c)ζ and that on ζj,k−1 be ζ+

k−1 for all j.

3. In Lemma 4.4.11, assuming that ζj,∗ ≤ ζ+
j,∗, ζj,k−1 ≤ ζ+

k−1, ζ+
k−1 ≤ 0.6k−1 + 0.4cζ and

the first three conditions of the theorem hold, we show the following for all t ∈ Ij,k,

k = 1, . . . (K + 1).
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(a) We bound ‖βt‖2 in terms of ζj,k−1 and ζj,∗.

(b) Next, we show that ‖βt‖2 ≤ ξ (with ξ chosen as given in the theorem). We use this,

Lemma 4.4.10 and Theorem 2.1.1 (CS result) to bound the CS error ‖Ŝt,cs − St‖2.

(c) Next, we show that if the support estimation threshold ω is chosen as given in the

theorem, then T̂t = Tt.

(d) With T̂t = Tt, we are able to give an exact expression for the LS step error, et :=

Ŝt − St and also bound it. Recall that et is also equal to Lt − L̂t.

4. In Lemma 4.4.12, we use the sin θ theorem and Weyl’s theorem (Theorems 2.2.1 and

2.2.2) to bound the subspace error ζj,k for projection PCA done at t = tj + kα − 1 in

terms of the perturbation matrix, Hj,k, and the various components of the decomposition

of Aj,k given in Definition 4.4.6.

5. Let Γe
j,k denote the event that (i) ζ1,∗ ≤ r0ζ, ζj′,k′ ≤ ζ+

k′ for all 1 ≤ j′ ≤ j − 1, 0 ≤ k′ ≤

K, and ζj,k′ ≤ ζ+
k′ , for all 0 ≤ k′ ≤ k, and (ii) T̂t = Tt and et satisfies (4.2) for all t ≤ tj +

kα− 1. Under the assumption that ζ+
k ≤ 0.6k +0.4cζ, with K defined as in the theorem,

it is clear that ζj′,K ≤ ζ+
K ≤ cζ. Thus, Γe

j,k implies that ζj,∗ ≤ ζ+
j,∗ = (r0 +(j− 1)c)ζ (this

is easy to see using Remark 4.4.4).

6. In Lemmas 4.4.14 and 4.4.15, under the assumption that ζ+
k−1 ≤ 0.6k−1 + 0.4cζ and the

conditions of the theorem hold, we obtain high probability bounds on the various terms

in the bound on ζj,k from Lemma 4.4.12, conditioned on Γe
j,k−1.

(a) These lemmas first use Lemma 4.4.11 to show that T̂t = Tt and thus et has an exact

expression given by (4.2) and then apply the matrix Hoeffding inequality (Corollary

2.3.4 or Corollary 2.3.5). Lemma 2.2.4 and Fact C.2.1 are used to obtain the final

expressions for the bounds and the probabilities with which they hold.

(b) A by-product is the following conclusion. Conditioned on Γe
j,k−1, the event that

T̂t = Tt and et satisfies (4.2) for all t ∈ Ij,k holds with probability one.
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7. In Lemma 4.4.16, under the assumption that ζ+
k−1 ≤ 0.6k−1+0.4cζ and the four conditions

of the theorem hold, we combine the bound of Lemma 4.4.12 with the bounds on its

individual terms from Lemmas 4.4.14 and 4.4.15 to obtain a high probability upper

bound on ζj,k, conditioned on Γe
j,k−1. The obtained bound is a function of ζ+

k−1, ζ+
j,∗

and of the bounds on κs(Dj,new,k) and on gj,k. We use this upper bound to define ζ+
k in

Definition 4.4.17.

8. In Lemma 4.4.18, assuming that the four conditions of the theorem hold, we show that

ζ+
k as defined in Definition 4.4.17 decreases with k and that it indeed satisfies ζ+

k ≤

0.6k + 0.4cζ for all k ≤ K.

9. Lemma 4.4.21 combines the results of Lemma 4.4.16 and Lemma 4.4.18. It shows that

just under the assumptions of the theorem, given Γe
j,k−1, the event that ζj,k ≤ ζ+

k ≤

0.6k + 0.4cζ and that T̂t = Tt and et satisfies (4.2) for all t ∈ Ij,k holds with a certain

probability that depends on α and ζ.

The proof of the theorem follows easily by applying Lemma 4.4.21 for each j and k and finally

using Lemma 4.4.18 and the definition of K. In the end, we use the definition of αadd and

α ≥ αadd to show that the the result holds w.p. at least 1 − n−10. Thus, for large enough n,

the result holds w.h.p.

4.4.4 Proof of Theorem 4.3.1

1. By the assumption that ‖(I − P̂0P̂
′
0)P0‖ ≤ r0ζ, P({ζ1,∗ ≤ ζ+

1,∗}) = 1. By Lemma 4.4.11,

ζ1,∗ ≤ ζ+
1,∗ implies that T̂t = Tt for all ttrain ≤ t ≤ t1 − 1. Thus, P(Γe

1,0) = 1.

2. Recall that Γe
j,k = Γe

j,k−1 ∩ Γ̃e
j,k for all k ≥ 1 and Γe

j+1,0 = Γe
j,0 ∩ (∩K+1

k=1 Γ̃e
j,k). Thus,

P(Γe
j+1,0) = P(Γe

j,0)
∏K+1

k=1 P(Γ̃e
j,k|Γe

j,0, Γ̃
e
j,1, . . . Γ̃

e
j,k−1) = P(Γe

j,0)
∏K+1

k=1 P(Γ̃e
j,k|Γe

j,k−1). Thus,

P(Γe
j+1,0) = P(Γe

1,0)
∏j

j′=1

∏K+1
k=1 P(Γ̃e

j′,k|Γe
j′,k−1).

3. Since P(Γe
1,0) = 1 > 0 and pk(α, ζ) > 0 for all k, we can apply Lemma 4.4.21 for

every k and j′ starting with k = 1, j′ = 1. Thus, by Lemma 4.4.21 P(Γe
J+1,0) ≥

(
∏K

k=1 pk(α, ζ))J ≥ (pK(α, ζ))KJ . The last inequality follows because pk ≥ pK .
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4. Now,

(a) Γe
J+1,0 implies that (i) T̂t = Tt and et satisfies (4.2) for all t < tJ+1; (ii) ζj,k ≤ ζ+

k

for all k ≤ K, j ≤ J .

(b) By Lemma 4.4.18, ζ+
k ≤ 0.6k + 0.4cζ. Thus, Γe

J+1,0 implies that ζ1,∗ ≤ r0ζ and

ζj,k ≤ 0.6k + 0.4cζ for all j ≤ J , k ≤ K. Using the definition of K, this means that

ζj,K ≤ cζ for all j. By Remark 4.4.4, all this implies that for t ∈ Ij,k, SEt ≤ ζj,∗ +

ζj,k−1 ≤ (r0+(j−1)c)ζ+0.4cζ+0.6k−1 , and for t ∈ Ij,K+1, SEt ≤ SEj,K ≤ (r0+jc)ζ.

(c) Combining the previous two conclusions and using Fact C.2.1, Γe
J+1,0 implies that

the bounds on ‖et‖2 hold.

5. Since P(Γe
J+1,0) ≥ (pK(α, ζ))KJ , all of the above hold w.p. at least (pK(α, ζ))KJ . Using

the definition of αadd, (pK(α, ζ))KJ ≥ 1 − n−10 whenever α ≥ αadd. Thus the above

conclusions hold w.p. at least 1− n−10.

4.5 ReProCS with practical parameters setting

The ReProCS algorithm given in Algorithm 2 uses knowledge of tj, r0, cj,new from the model

and it has four parameters ξ, ω, α,K that can be set in terms of the model parameters as given

in Theorem 4.3.1. However, it is unreasonable to expect that, in practice, the model parameters

are known. We provide here reasonable heuristics for setting both the model and the algorithm

parameters automatically.

For a vector v, we define the 99%-energy set of v as T0.99(v) := {i : |vi| ≥ v0.99} where

the threshold v0.99 is the largest value of |vi| so that ‖vT0.99‖22 ≥ 0.99‖v‖22 . It is computed by

sorting |vi| in non-increasing order of magnitude. One keeps adding elements to T0.99 until

‖vT0.99‖22 ≥ 0.99‖v‖22 .

We pick α = 100 arbitrarily. We let ξ = ξt and ω = ωt vary with time. Recall that ξt

is the upper bound on ‖βt‖2. We do not know βt. All we have is an estimate of βt from

t − 1, β̂t−1 = (I − P̂(t−1)P̂
′
(t−1))L̂t−1. We used a value a little larger than ‖β̂t−1‖2 for ξt: we

let ξt = 2‖β̂t−1‖2. The parameter ωt is the support estimation threshold. One reasonable
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way to pick this is to use a percentage energy threshold of Ŝt,cs [40]. In this work, we used

ωt = 0.5(Ŝt,cs)0.99.

Let λ̂1, λ̂2, · · · , λ̂ttrain denote the eigenvalues of 1
ttrain

∑ttrain
t=1 LtLt

′. We estimate r0 and λ−

as

r̂0 = max
i=1,2,··· ,ttrain−1

(
λ̂i − λ̂i+1

λ̂i

), λ̂− = λ̂r̂0 (4.7)

This heuristic relies on the fact that the maximum normalized difference between consecutive

eigenvalues is from λ− to zero.

We split projection PCA into two phases: “detect” and “estimate”. In the “detect” phase,

we estimate the change time tj and the number of new added directions cj,new as follows. We

keep doing projection PCA every α frames and looking for eigenvalues above λ̂−. If there

are any eigenvalues above λ̂−, we let t̂j = t − α + 1 and we let ĉj,new be the number of these

eigenvalues. Also, we increment j and we reset k to one. At this time, the algorithm enters

the “estimate” phase. In this phase, we keep doing projection PCA every α frames until the

stopping criterion given in step 3(a)iiB of Algorithm 3 is satisfied (this estimates K). The idea

is to stop when k exceeds Kmin and P̂ ′
j,new,kPj,new is approximately equal to P̂ ′

j,new,k−1Pj,new

three times in a row; or when k = Kmax. We pick Kmin = 5,Kmax = 20 arbitrarily. When

the stopping criterion is satisfied, we let Kj = k and P̂j = [P̂j−1, P̂j,new,Kj ], and the algorithm

enters the “detect” phase.

4.6 Experimental Results

The simulated data is generated as follows.

The measurement matrixMt := [M1,M2, · · · ,Mt] is of size 2048× 5200. It can be decom-

posed as a sparse matrix St := [S1, S2, · · · , St] plus a low rank matrix Lt := [L1, L2, · · · , Lt].

The sparse matrix St := [S1, S2, · · · , St] is generated as follows.

1. For 1 ≤ t ≤ ttrain = 200, St = 0.

2. For ttrain < t ≤ 5200, St has s nonzero elements. The initial support T0 = {1, 2, . . . s}.

Every ∆ time instants we increment the support indices by 1. For example, for t ∈
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[ttrain + 1, ttrain + ∆− 1], Tt = T0, for t ∈ [ttrain + ∆, ttrain + 2∆− 1]. Tt = {2, 3, . . . s + 1}

and so on. Thus, the support set changes in a highly correlated fashion over time and

this results in the matrix St being low rank. The larger the value of ∆, the smaller will

be the rank of St (for t > ttrain + ∆).

3. The signs of the nonzero elements of St are P ′
1→21 with equal probability and the mag-

nitudes are uniformly distributed between 2 and 3. Thus, Smin = 2.

The low rank matrix Lt := [L1, L2, · · · , Lt] where Lt := P(t)at is generated as follows:

1. There are a total of J = 2 subspace change times, t1 = 301 and t2 = 2501. Let U be an

2048 × (r0 + c1,new + c2,new) orthonormalized random Gaussian matrix.

(a) For 1 ≤ t ≤ t1 − 1, P(t) = P0 has rank r0 with P0 = U[1,2,··· ,r0].

(b) For t1 ≤ t ≤ t2 − 1, P(t) = P1 = [P0 P1,new] has rank r1 = r0 + c1,new with

P1,new = U[r0+1,··· ,r0+c1,new].

(c) For t ≥ t2, P(t) = P2 = [P1 P2,new] has rank r2 = r1 + c2,new with P2,new =

U[r0+c1,new+1,··· ,r0+c1,new+c2,new].

2. at is independent over t. The various (at)i’s are also mutually independent for different

i.

(a) For 1 ≤ t < t1, we let (at)i be uniformly distributed between −γi,t and γi,t, where

γi,t =























































400 if i = 1, 2, · · · , r0/4,∀t,

30 if i = r0/4 + 1, r0/4 + 2, · · · , r0/2,∀t.

2 if i = r0/2 + 1, r0/2 + 2, · · · , 3r0/4,∀t.

1 if i = 3r0/4 + 1, 3r0/4 + 2, · · · , r0,∀t.

(4.8)

(b) For t1 ≤ t < t2, at,∗ is an r0 length vector, at,new is a c1,new length vector and

Lt := P(t)at = P1at = P0at,∗ + P1,newat,new. (at,∗)i is uniformly distributed between
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−γi,t and γi,t and at,new is uniformly distributed between −γr1,t and γr1,t, where

γr1,t =



















1.1k−1 if t1 + (k − 1)α ≤ t ≤ t1 + kα− 1, k = 1, 2, 3, 4,

1.14−1 = 1.331 if t ≥ t1 + 4α.

(4.9)

(c) For t ≥ t2, at,∗ is an r1 = r0 + c1,new length vector, at,new is a c2,new length vector

and Lt := P(t)at = P2at = [P0P1,new]at,∗ + P2,newat,new. Also, (at,∗)i is uniformly

distributed between −γi,t and γi,t for i = 1, 2, · · · , r0 and is uniformly distributed

between −γr1,t and γr1,t for i = r0 +1, . . . r1. at,new is uniformly distributed between

−γr2,t and γr2,t, where

γr2,t =



















1.1k−1 if t2 + (k − 1)α ≤ t ≤ t2 + kα− 1, k = 1, 2, · · · , 7,

1.17−1 = 1.7716 if t ≥ t2 + 7α.

(4.10)

Thus for the above model, γ∗ = 400, γnew = 1, λ+ = 53333, λ− = 0.3333 and f := λ+

λ− =

1.6× 105. Also, Smin = 2.

We used Lttrain +Nttrain as the training sequence to estimate P̂0. Here Nttrain =

[N1, N2, · · · , Nttrain ] is i.i.d. random noise with each (Nt)i uniformly distributed between −10−3

and 10−3. This is done to ensure that span(P̂0) 6= span(P0) but only approximates it.

For Fig. 4.2 and Fig. 4.3, we used s = 20, r0 = 36 and c1,new = c2,new = 1. We let

∆ = 10 for Fig. 4.2 and ∆ = 50 for Fig. 4.3. Because of the correlated support change, the

2048 × t sparse matrix St = [S1, S2, · · · , St] is rank deficient in either case, e.g. for Fig. 4.2,

St has rank 29, 39, 49, 259 at t = 300, 400, 500, 2600; for Fig. 4.3, St has rank 21, 23, 25, 67

at t = 300, 400, 500, 2600. We plot the subspace error SE(t) and the normalized error for St,

‖Ŝt−St‖2

‖St‖2
averaged over 100 Monte Carlo simulations. We also plot the ratio

‖ITt
′Dj,new,k‖2

‖Dj,new,k‖2
at

the projection PCA times. This serves as a proxy for κs(Dj,new,k) (which has exponential

computational complexity). In fact, in our proofs, we only need this ratio to be small at every

t = tj + kα− 1.

We compared against PCP [2]. At every t = tj+4kα, we solved (1.1) with λ = 1/
√

max(n, t)

to recover St and Lt. We used the estimates of St for the last 4α frames as the final estimates
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of Ŝt. So, the Ŝt for t = tj + 1, . . . tj + 4α is obtained from PCP done at t = tj + 4α, the Ŝt for

t = tj + 4α + 1, . . . tj + 8α is obtained from PCP done at t = tj + 8α and so on. In Fig. 4.2,

Fig. 4.3 and Fig. 4.4, the times at which PCP is done are marked by red triangles.

As can be seen from Fig. 4.2, the subspace error SE(t) of ReProCS decreased exponentially

and stabilized after about 4 projection PCA update steps. The averaged normalized error for

St followed a similar trend. ReProCS(practical) performed similar to ReProCS but stabilized

in about 6 projection PCA update steps. In Fig. 4.3 where ∆ = 50, the subspace error SE(t)

also decreased but the decrease was a bit slower as compared to Fig. 4.2 where ∆ = 10. Also,

the ratio
‖ITt

′Dj,new,k‖2

‖Dj,new,k‖2
was now larger. Because of the correlated support change, the error of

PCP was larger in both cases. The difference in performance between ReProCS and PCP is

larger when ∆ = 50.

For Fig. 4.4, we increased s to 100 and we used ∆ = 10. A larger s results in a larger

‖ITt
′Dj,new,k‖2

‖Dj,new,k‖2
(and larger κs(Dj,new,k)). Thus, the rate of decrease of SE(t) is smaller than that

for the previous two figures. The error of St followed a similar trend.

Finally, if we set ∆ = ∞, the ratio
‖ITt

′Dj,new,k‖2

‖Dj,new,k‖2
was 1 always. As a result, the subspace

error and hence the reconstruction error of ReProCS did not decrease from its initial value at

the subspace change time. For ReProCS, the average error 1
5200

∑5200
t=201

‖Ŝt−St‖2

‖St‖2
= 8.4 × 10−3.

The error of PCP was also very high: 1
5200

∑5200
t=201

‖Ŝt−St‖2

‖St‖2
= 0.43.

We also did one experiment in which we generated Tt of size s = 100 uniformly at random

from all possible s-size subsets of {1, 2, . . . n}. Tt at different times t was also generated

independently. In this case, the reconstruction error of ReProCS is 1
5000

∑5200
t=201

‖Ŝt−St‖2

‖St‖2
=

2.8472 × 10−4. The error for PCP was 3.5× 10−3 which is also quite small.
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Algorithm 3 ReProCS(practical)

Input: Mt, Output: Ŝt, L̂t, P̂(t).

Initialization: Given training sequence [L1, L2, · · · , Lttrain ], compute the EVD of
1

ttrain

∑ttrain
t=1 LtLt

′ EV D
= EΛE′ and then estimate r̂0 and λ̂− using (4.7). Let P̂0 retain the

eigenvectors with the r̂0 largest eigenvalues.

At t = ttrain, let P̂(t) ← P̂0. Let j ← 0, k ← 1, t̂j = ttrain + 1 and flag ← detect. For t > ttrain,

do the following:

1. Do step 1) of Algorithm 2 but with ξ and ω replaced by ξt and ωt computed as explained

in Sec. 4.5.

2. Do step 2) of Algorithm 2.

3. Projection PCA: Update P̂(t) as follows.

(a) If t = t̂j +kα−1, compute EVD of 1
α

∑t̂j+kα−1

t=t̂j+(k−1)α
(I−P̂j−1P̂

′
j−1)L̂tL̂

′
t(I−P̂j−1P̂

′
j−1)

i. If flag = detect,

A. If no eigenvalues are above λ̂−, then P̂(t) ← P̂(t−1). Increment k ← k + 1.

B. If there are eigenvalues above λ̂−, then t̂j ← t − α + 1, j ← j + 1, k ← 1,

flag ← estimate.

ii. Else if flag = estimate,

A. Let P̂j,new,k retain the eigenvectors with eigenvalues above λ̂−, P̂(t) ←
[P̂j−1 P̂j,new,k] and k ← k + 1.

B. If if k ≥ Kmin and
‖
∑t

t−α+1
(P̂j,new,i−1P̂ ′

j,new,i−1−P̂j,new,iP̂
′
j,new,i)Lt‖2

‖
∑t

t−α+1
P̂j,new,i−1P̂ ′

j,new,i−1Lt‖2
< 0.01 for

i = k − 2, k − 1, k; or k = Kmax, then K̂j ← k, P̂j ← [P̂j−1 P̂
j,new,K̂j

] and

reset flag ← detect.

Else (t 6= t̂j + kα− 1) set P̂(t) ← P̂(t−1).

4. Increment t← t + 1 and go to step 1.
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Figure 4.2 ReProCS with r0 = 36, s = maxt |Tt| = 20 and ∆ = 10.
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Figure 4.3 ReProCS with r0 = 36, s = maxt |Tt| = 20 and ∆ = 50.
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Figure 4.4 ReProCS with r0 = 36, s = maxt |Tt| = 100 and ∆ = 10.
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CHAPTER 5. ReProCS with cluster-PCA (ReProCS-cPCA) an its

performance Guarantee

ReProCS-cPCA needs an extra assumption that the eigenvalues of the covariance matrix

of Lt are sufficiently clustered as explained in Sec. 5.1. We develop the ReProCS-cPCA

algorithm in Sec 5.2. We summarize the ReProCS-cPCA algorithm in Algorithm 4. We give

the performance guarantees (Theorem 5.3.1) in Sec 5.3. Here we also provide a discussion of

the result and the assumptions it makes. The proof of Theorem 5.3.1 is given in Sec 5.4. The

key lemmas needed for it are given and proved in Appendix D.2. In Sec 5.5, we show numerical

experiments demonstrating Theorem 5.3.1, as well as comparisons with ReProCS and PCP.

Parts of this chapter are taken verbatim from [33] [34].

5.1 Clustering assumption

For positive integers K and α, let t̃j := tj +Kα. Recall from the model on Lt and the slow

subspace change assumption that new directions, Pj,new, get added at t = tj and initially, for

the first α frames, the projection of Lt along these directions is small (and thus their variances

are small), but can increase gradually. It is fair to assume that by t = t̃j , the variances along

these new directions have stabilized and do not change much for t ∈ [t̃j , tj+1 − 1]. It is also

fair to assume that the same is true for the variances along the existing directions, Pj−1. In

other words, we assume that the matrix Λt is either constant or does not change much during

this period. Under this assumption, we assume that we can cluster its eigenvalues (diagonal

entries) into a few clusters such that the distance between consecutive clusters is large and

the distance between the smallest and largest element of each cluster is small. We make this

precise below.
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Figure 5.1 Illustration of the clustering assumption (assume Λt = Λt̃j
).
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Assumption 5.1.1 Assume the following.

1. Either Λt = Λt̃j
for all t ∈ [t̃j , tj+1 − 1] or Λt changes very little during this period so

that for each i = 1, 2, · · · , rj , mint∈[t̃j ,tj+1−1] λi(Λt) ≥ maxt∈[t̃j ,tj+1−1] λi+1(Λt).

2. Let Gj,(1),Gj,(2), · · · ,Gj,(ϑj) be a partition of the index set {1, 2, . . . rj} so that

mini∈Gj,(k)
mint∈[t̃j ,tj+1−1] λi(Λt) > maxi∈Gj,(k+1)

maxt∈[t̃j ,tj+1−1] λi(Λt), i.e. the first clus-

ter contains the largest set of eigenvalues, the second one the next smallest set and so on

(see Fig 5). Let

(a) Gj,k := (Pj)Gj,(k)
be the corresponding cluster of eigenvectors, then

Pj = [Gj,1, Gj,2, · · · , Gj,ϑj
];

(b) c̃j,k := |Gj,(k)| be the number of elements in Gj,(k), then
∑ϑj

k=1 c̃j,k = rj;

(c) λj,k
− := mini∈Gj,(k)

mint∈[t̃j ,tj+1−1] λi(Λt), λj,k
+ := maxi∈Gj,(k)

maxt∈[t̃j ,tj+1−1] λi(Λt)

and λj,ϑj+1
+ := 0;

(d) g̃j,k := λj,k
+/λj,k

− (notice that g̃j,k ≥ 1);

(e) h̃j,k := λj,k+1
+/λj,k

− (notice that h̃j,k < 1);

(f) g̃max := maxj maxk=1,2,··· ,ϑj
g̃j,k, h̃max := maxj maxk=1,2,··· ,ϑj

h̃j,k,

c̃min := minj mink=1,2,··· ,ϑj
c̃j,k

(g) ϑmax := maxj ϑj

We assume that g̃max is small enough (the distance between the smallest and largest

eigenvalues of a cluster is small) and h̃max is small enough (distance between consecutive

clusters is large). We quantify this in Theorem 5.3.1.

Remark 5.1.2 The assumption above can, in fact, be relaxed to only require the following.

The matrices Λt are such that there exists a partition, Gj,(1),Gj,(2), · · · ,Gj,(ϑj), of the index

set {1, 2, . . . rj} so that mini∈Gj,(k)
mint∈[t̃j ,tj+1−1] λi(Λt) > maxi∈Gj,(k+1)

maxt∈[t̃j ,tj+1−1] λi(Λt).

Define all quantities as above. We assume that g̃max and h̃max are small enough.
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5.2 The ReProCS-cPCA algorithm

ReProCS-cPCA is summarized in Algorithm 4. It uses the following definition.

Definition 5.2.1 Let t̃j := tj + Kα. Define the following time intervals

1. Ij,k := [tj + (k − 1)α, tj + kα− 1] for k = 1, 2, · · · ,K.

2. Ĩj,k := [t̃j + (k − 1)α̃, t̃j + kα̃− 1] for k = 1, 2, · · · , ϑj .

3. Ĩj,ϑj+1 := [t̃j + ϑjα̃, tj+1 − 1].

Notice that [tj , tj+1 − 1] = (∪K
k=1Ij,k) ∪ (∪ϑj

k=1Ĩj,k) ∪ Ĩj,ϑj+1. Also, K, α and α̃ are parameters

given in Algorithm 4.

ReProCS-cPCA proceeds as follows. The algorithms begins with the knowledge of P̂0 and

initializes P̂(ttrain) ← P̂0. P̂0 can be computed as the top r0 left singular vectors ofMttrain (since,

by assumption, Sttrain is either zero or very small). For t > ttrain, the following is done. Step 1

projects Mt perpendicular to P̂(t−1), solves the ℓ1 minimization problem, followed by support

recovery and finally computes a least squares (LS) estimate of St on its estimated support.

This final estimate Ŝt is used to estimate Lt as L̂t = Mt − Ŝt in step 2. The sparse recovery

error, et := Ŝt−St. Since L̂t = Mt− Ŝt, et also satisfies et = Lt−L̂t. Thus, a small et (accurate

recovery of St) means that Lt is also recovered accurately. Step 3a is used at times when no

subspace update is done. In step 3b, the estimated L̂t’s are used to obtain improved estimates

of span(Pj,new) every α frames for a total of Kα frames using the proj-PCA procedure given

in Algorithm 1. Within K proj-PCA updates (K chosen as given in Theorem 5.3.1), it can be

shown that both ‖et‖2 and the subspace error, SE(t) := ‖(I − P̂(t)P̂
′
(t))P(t)‖2, drop down to a

constant times ζ. In particular, if at t = tj − 1, SE(t) ≤ rζ, then at t = t̃j := tj + Kα, we can

show that SE(t) ≤ (r + cmax)ζ. Here r := rmax = r0 + cmax.

To bring SE(t) down to rζ before tj+1, we need a step so that by t = tj+1 − 1 we have

an estimate of only span(Pj), i.e. we have “deleted” span(Pj,old). One simple way to do this

is by standard PCA: at t = t̃j + α̃ − 1, compute P̂j ← proj-PCA([L̂t; t ∈ Ĩj,1], [.], rj) and let

P̂(t) ← P̂j . Using the sin θ theorem and the Hoeffding corollaries, it can be shown that, as
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long as f is small enough, doing this is guaranteed to give an accurate estimate of span(Pj).

However f being small is not compatible with the slow subspace change assumption. Notice

from Sec 3 that λ− ≤ γnew and E[||Lt||22] ≤ rλ+. Slow subspace change implies that γnew is

small. Thus, λ− is small. However, to allow Lt to have large magnitude, λ+ needs to be large.

Thus, f = λ+/λ− cannot be small unless we require that Lt has small magnitude for all times

t.

In step 3c, we introduce a generalization of the above strategy called cluster-PCA, that

removes the bound on f , but instead only requires that the eigenvalues of Cov(Lt) be sufficiently

clustered as explained in Sec 5.1. The main idea is to recover one cluster of entries of Pj at a

time. In the kth iteration, we apply proj-PCA on [L̂t; t ∈ Ĩj,k] with P ← [Ĝj,1, Ĝj,2, . . . Ĝj,k−1])

to estimate span(Gj,k). The first iteration uses P ← [.], i.e. it computes standard PCA to

estimate span(Gj,1). By modifying the approach used for ReProCS for analyzing the addition

step, we can show that since g̃j,k and h̃j,k are small enough (by Assumption 5.1.1), span(Gj,k)

will be accurately recovered, i.e. ‖(I −∑k
i=1 Ĝj,iĜ

′
j,i)Gj,k‖2 ≤ c̃j,kζ. We do this ϑj times and

finally we set P̂j ← [Ĝj,1, Ĝj,2 . . . Ĝj,ϑj
] and P̂(t) ← P̂j . All of this is done at t = t̃j + ϑjα̃− 1.

Thus, at this time, SE(t) = ‖(I− P̂jP̂
′
j)Pj‖2 ≤

∑ϑj

k=1 ‖(I−
∑k

i=1 Ĝj,iĜ
′
j,i)Gj,k‖2 ≤

∑ϑj

k=1 c̃j,kζ =

rjζ ≤ rζ. Under the assumption that tj+1− tj ≥ Kα+ϑmaxα̃, this means that before the next

subspace change time, tj+1, SE(t) is below rζ.

We illustrate the ideas of subspace estimation by addition proj-PCA and cluster-PCA in

Fig. 5.2.

The ReProCS-cPCA algorithm has parameters ξ, ω, α, α̃, K and it uses knowledge of

model parameters tj, r0, cj,new, ϑj and c̃j,i. If the model is known the algorithm parameters

can be set as in Theorem 5.3.1. In practice, typically the model is unknown. In this case,

the parameters tj , r0, cj,new, ξ, ω, K can be set as explained for the ReProCS algorithm.

The parameters ϑj and c̃j,i for i = 1, 2 . . . ϑj , can be set by computing the eigenvalues of

1
α̃

∑

t∈Ĩj,1
L̂tL̂

′
t and clustering them using any standard clustering algorithm, e.g. k-means

clustering or split-and-merge1. We pick α and α̃ somewhat arbitrarily. A thumb rule is that α

1One simple split-and-merge approach is as follows. Start with a single cluster. Split into two clusters: select
the split so that g̃max is minimized. Split each of these clusters into two parts again while ensuring g̃max is



www.manaraa.com

55

First

proj PCA

Subspace

change

time

Second

proj PCA

Addition is done Deletion is done

Figure 5.2 A diagram illustrating subspace estimation by ReProCS-cPCA

and α̃ need to be at least five to ten times cmax and maxj maxi=1,2...ϑj
c̃j,i respectively. From

simulation experiments, the algorithm is not very sensitive to the specific choice.

As explained in Sec. 4.2, the reason we use proj-PCA instead of standard PCA is because

et = L̂t − Lt is correlated with Lt.

5.3 Performance Guarantees

We state the main result first and then discuss it. We give its corollary for the case where

f is small in Corollary 5.3.2. The proof is given in Sec 5.4.

Theorem 5.3.1 Consider Algorithm 4. Let c := cmax and r := r0 + c. Assume that Lt

obeys the model given in Assumption 3.1.1. Also, assume that the initial subspace estimate is

accurate enough, i.e. ‖(I − P̂0P̂
′
0)P0‖ ≤ r0ζ, for a ζ that satisfies

ζ ≤ min(
10−4

(r + c)2
,
1.5× 10−4

(r + c)2f
,

1

(r + c)3γ2∗
) where f :=

λ+

λ−

minimized. Keep doing this for d1 steps. Notice that, with every splitting, g̃max will either remain the same or
reduce, however h̃max will either remain same or increase. Then, do a set of merge steps: in each step find the
pair of consecutive clusters to merge that will minimize h̃max.
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Let ξ0(ζ), ρ,K(ζ), αadd(ζ), αdel(ζ), gj,k be as defined in Definition 5.4.2. If the following con-

ditions hold:

1. (algorithm parameters) ξ = ξ0(ζ), 7ρξ ≤ ω ≤ Smin−7ρξ, K = K(ζ), α ≥ αadd(ζ), α̃ ≥

αdel(ζ),

2. (denseness)

max
j

κ2s(Pj−1) ≤ κ+
2s,∗ = 0.3, max

j
κ2s(Pj,new) ≤ κ+

2s,new
= 0.15,

max
j

max
0≤k≤K

κ2s(Dj,new,k) ≤ κ+
s = 0.15, max

j
max

0≤k≤K
κ2s(Qj,new,k) ≤ κ̃+

2s = 0.15,

max
j

κs((I − P̂j−1P̂
′
j−1 − P̂j,new,KP̂ ′

j,new,K)Pj) ≤ κ+
s,e

where Dj,new,k := (I − P̂j−1P̂
′
j−1 − P̂j,new,kP̂

′
j,new,k)Pj,new, and

Qj,new,k := (I − Pj,newPj,new
′)P̂j,new,k and P̂j,new,0 = [.],

3. (slow subspace change)

max
j

(tj+1 − tj) > Kα + ϑmaxα̃,

max
j

max
t∈Ij,k

‖at,new‖∞ ≤ γnew,k := min(1.2k−1γnew, γ∗), for all k = 1, 2, . . . K,

14ρξ0(ζ) ≤ Smin,

4. (small average condition number of Cov(at,new)) gj,k ≤ g+ :=
√

2,

5. (clustered eigenvalues) Assumption 5.1.1 holds with g̃max, h̃max, c̃min satisfying

fdec(g̃max, h̃max)− finc(g̃max,h̃max)
c̃minζ

> 0 where fdec(g̃max, h̃max) and finc(g̃max, h̃max) are de-

fined in Definition 5.4.3 (also see Remark D.2.5 which weakens this requirement),

then, with probability at least 1− 2n−10, at all times, t,

1. T̂t = Tt and ‖et‖2 = ‖Lt − L̂t‖2 = ‖Ŝt − St‖2 ≤ 0.18
√

cγnew + 1.24
√

ζ.
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2. the subspace error, SE(t) satisfies

SE(t)≤



























0.6k−1 + rζ + 0.4cζ if t ∈ Ij,k, k = 1, · · · ,K

(r + c)ζ if t ∈ ∪ϑj

k=1Ĩj,k
rζ if t ∈ Ĩj,ϑj+1

≤











0.6k−1 + 10−2
√

ζ if t ∈ Ij,k, k = 1, 2, · · · ,K

10−2
√

ζ if t ∈ (∪ϑj

k=1Ĩj,k) ∪ Ĩj,ϑj+1

3. the error et = Ŝt − St = Lt − L̂t satisfies the following at various times

‖et‖2≤



























1.17[0.15 · 0.72k−1√cγnew + 0.15 · 0.4cζ√cγ∗ + rζ
√

rγ∗] if t ∈ Ij,k, k = 1, · · · ,K

1.17(r + c)ζ
√

rγ∗ if t ∈ ∪ϑj

k=1Ĩj,k
1.17rζ

√
rγ∗ if t ∈ Ĩj,ϑj+1

≤











0.18 · 0.72k−1√cγnew + 1.17 · 1.06√ζ if t ∈ Ij,k, k = 1, 2, · · · ,K

1.17
√

ζ if t ∈ (∪ϑj

k=1Ĩj,k) ∪ Ĩj,ϑj+1

The above result says the following. Assume that the initial subspace error is small enough.

If the assumptions given in the theorem hold, then, w.h.p., we will get exact support recovery

at all times. Moreover, the sparse recovery error (and the error in recovering Lt) will always be

bounded by 0.18
√

cγnew plus a constant times
√

ζ. Since ζ is very small, γnew ≪ Smin, and c

is also small, the normalized reconstruction error for St will be small at all times, thus making

this a meaningful result. In the second conclusion, we bound the subspace estimation error,

SE(t). When a subspace change occurs, this error is initially bounded by one. The above result

shows that, w.h.p., with each adddition proj-PCA step, this error decays roughly exponentially

and falls below (r + c)ζ within K steps. After the cluster-PCA step, this error falls below rζ.

By assumption, this occurs before the next subspace change time. Because of the choice of ζ,

both (r + c)ζ and rζ are below 0.01
√

ζ. The third conclusion shows that the sparse recovery

error as well as the error in recovering Lt decay in a similar fashion.

Notice from Definition 5.4.2 that K = K(ζ) is larger if ζ is smaller. Also, both αadd(ζ) and

αdel(ζ) are inversely proportional to ζ. Thus, if we want to achieve a smaller lowest error level,

ζ, we need to compute both addition proj-PCA and cluster-PCA’s over larger durations, α
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and α̃ respectively, and we will need more number of addition proj-PCA steps K. Because of

slow subspace change, this means that we also require a larger delay between subspace change

times, i.e. larger tj+1 − tj .

The ReProCS algorithm is Algorithm 4 with step 3c removed and replaced by P̂j ←

[P̂j−1, P̂j,new,K ]. Let us compare the above result with that for ReProCS for the subspace

change model of Assumption 3.1.1. First, ReProCS requires κ2s([P0, P1,new, . . . PJ,new]) ≤ 0.3

whereas ReProCS-cPCA only requires maxj κ2s(Pj) ≤ 0.3. Moreover, ReProCS requires ζ to

satisfy ζ ≤ min( 10−4

(r0+(J−1)c)2 , 1.5×10−4

(r0+(J−1)c)2f
, 1

(r0+(J−1)c)3γ2
∗
) whereas in case of ReProCS-cPCA

the denominators in the bound on ζ only contain r + c = r0 + 2c (instead of r0 + (J − 1)c).

Because of the above, in Theorem 5.3.1 for ReProCS-cPCA, the only place where J (the

number of subspace change times) appears is in the definitions of αadd and αdel. Notice that

αadd and αdel govern the delay between subspace change times, tj+1−tj . Thus, with ReProCS-

cPCA, J can keep increasing, as long as tj+1 − tj also increases accordingly. Moreover, notice

that the dependence of αadd and αdel on J is only logarithmic and thus tj+1− tj needs to only

increase in proportion to log J . On the other hand, for ReProCS, J appears in the denseness

assumption, in the bound on ζ and in the definition of αadd. Thus, ReProCS needs a bound

on J that is indirectly imposed by the denseness assumption.

The main extra assumptions that ReProCS-cPCA needs are (i) the clustering assump-

tion (Assumption 5.1.1 with h̃max, g̃max being small enough to satisfying fdec(g̃max, h̃max) −
finc(g̃max,h̃max)

c̃minζ
> 0; and (ii) maxj κs((I − P̂j−1P̂

′
j−1 − P̂j,new,KP̂ ′

j,new,K)Pj) < κ+
s,e. The second

assumption is similar to the denseness assumption on Dj,new,k which is required by both Re-

ProCS and ReProCS-cPCA. The clustering assumption is a practically valid one. We verified

it for a video of moving lake waters (see Sec. 3.4) as follows. We first “low-rankified” it to 90%

energy as explained in Sec. 3.4. Note that, with one sequence, it is not possible to estimate

Λt (this would require an ensemble of sequences) and thus it is not possible to check if all

Λt’s in [t̃j, tj+1 − 1] are similar enough. However, by assuming that Λt is the same for a long

enough sequence, one can estimate it using a time average and then verify if its eigenvalues are

sufficiently clustered. When this was done, we observed that the clustering assumption holds
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with g̃max = 7.2 and h̃max = 0.34.

We provide a qualitative comparison with the PCP result of [2]. A direct comparison is not

possible since the proof techniques used are very different and since we solve a recursive version

of the problem where as PCP solves a batch one. Moreover, PCP provides guarantees for exact

recovery of St and Lt. In our result, we obtain guarantees for exact support recovery of the

St’s (and hence of St) and bounded error recovery of its nonzero values and of Lt. Also, the

PCP algorithm assumes no model knowledge, whereas our algorithm does assume knowledge

of model parameters.

Consider the denseness assumptions. Let Lt = UΣV ′ be its SVD. Then, for t ∈ [tj , tj+1−1],

U = [P0, P1,new, P2,new, . . . Pj,new] and V = [a1, a2 . . . at]
′Σ−1. The result for PCP [2] assumes

denseness of U and of V : it requires κ1(U) ≤
√

µr/n and κ1(V ) ≤
√

µr/n for a constant

µ ≥ 1. Moreover, it also requires ‖UV ′‖max ≤ √µr/n. On the other hand, ReProCS-cPCA

only requires κ2s(Pj) ≤ 0.3 and κ2s(Pj,new) ≤ 0.15. It does not need denseness of the entire U ;

it does not assume anything about denseness of V ; and it does not need a bound on ‖UV ′‖max.

Another difference is that the result for PCP assumes that any element of the n×t matrix St

is nonzero w.p. ̺, and zero w.p. 1−̺, independent of all others (in particular, this means that

the support sets of the different St’s are independent over time). Our result for ReProCS-cPCA

does not put any such assumption. However it does require denseness of the matrix Dj,new,k

whose columns span the unestimated part of span(Pj,new) for t ∈ Ij,k+1. As demonstrated in

Sec. 5.5, this reduces (κs(Dj,new,k) increases) if the support sets of St’s change very little over

time. However, as long as, for most k, κs(Dj,new,k) is anything smaller than one, which happens

as long as there is at least one support change during Ij,k, the subspace error does decay down

to a small enough value within a finite number of steps. The number of steps required for

this increases as κs(Dj,new,k) increases. Since κs(Dj,new,k) cannot be computed in polynomial

time, for the above discussion, we computed ‖ITt
′Dj,new,k‖2/‖Dj,new,k‖2 at t = tj + kα− 1 for

k = 0, 1, . . . K. In fact, our proof also only needs a bound on this latter quantity.

Also, some additional assumptions that ReProCS-cPCA needs are (a) accurate knowledge

of the initial subspace and slow subspace change; (b) denseness of Qj,new,k; (c) the independence
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of at’s over time; (d) condition number of the average covariance matrix of at,new is not too

large; and (e) the clustering assumption. Assumptions (a), (b), (c) are discussed in detail

in Sec. 4.2 and (a) is also verified for real data. As explained in Sec. 4.3, (c) can possibly

be replaced by a weaker random walk model assumption on at’s if we use the matrix Azuma

inequality [25] instead of matrix Hoeffding. Assumption (e) is discussed above. (d) is also

an assumption made for simplicity. It can be removed if a clustering assumption similar to

Assumption 5.1.1 holds for (Λt)new = Cov(at,new) during t ∈ [tj , t̃j−1] and we use an approach

similar to cluster-PCA. If there are ϑnew,j clusters, we will need ϑnew,j proj-PCA steps to

estimate P̂new,k (instead of the current one step). At the lth step, we use proj-PCA with P

being P̂j−1 concatenated with the basis matrix estimates for the last l − 1 clusters to recover

the lth cluster.

If in a problem, Lt has small magnitude for all times t, then f , which is the maximum

condition number of Cov(Lt) for any t, can be small. If this is the case, then the clustering

assumption trivially holds with ϑj = 1, c̃j,1 = rj, g̃max = g̃j,1 = f and h̃max = hj,1 = 0. Thus,

ϑmax = 1. In this case, the following corollary holds.

Corollary 5.3.2 Assume that the initial subspace estimate is accurate enough as given in

Theorem 5.3.1 with ζ as chosen there. Also assume that the first four conditions of Theorem

5.3.1 hold. Then, if f is small enough so that finc(f, 0) ≤ fdec(f, 0)c̃minζ, then, all conclusions

of Theorem 5.3.1 hold.

Notice that the above corollary does not need Assumption 5.1.1 to hold.

5.4 Proof of Theorem 5.3.1

We first define all the quantities that are needed for the proof. The proof outline is given

in Sec 5.4.1.

Certain quantities are defined earlier in Assumptions 3.1.1 and 5.1.1, in Definitions 3.1.2

and 5.2.1, in Algorithm 4 and in Theorem 5.3.1.

Definition 5.4.1 In the sequel, we let
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1. c := cmax and r := rmax = r0 + c and so rj = r0 +
∑j

i=1(ci,new − ci,old) ≤ r,

2. φ+ := 1.1735

Definition 5.4.2 We define here the parameters used in Theorem 5.3.1.

1. Define K(ζ) :=
⌈

log(0.6cζ)
log 0.6

⌉

2. Define ξ0(ζ) :=
√

cγnew + 1.06
√

ζ

3. Define ρ := maxt{κ1(Ŝt,cs − St)}. Notice that ρ ≤ 1.

4. Define the condition number of the average of Cov(at,new) over t ∈ Ij,k as

gj,k :=
λj,new,k

+

λj,new,k
− where

λj,new,k
+ :=λmax(

1

α

∑

t∈Ij,k

(Λt)new), λj,new,k
− := λmin(

1

α

∑

t∈Ij,k

(Λt)new),

5. Let K = K(ζ). We define αadd(ζ) as in Definition 5.4.2 the smallest value of α so that

(pK(α, ζ))KJ ≥ 1 − n−10, where pK(α, ζ) is defined in Lemma D.1.3. An explicit value

for it is

αadd(ζ) = ⌈(log 6KJ + 11 log n)
8 · 242

(ζλ−)2
max(min(1.24Kγ4

new, γ4
∗),

16

c2
,

4(0.186γ2
new + 0.0034γnew + 2.3)2)⌉

In words, αadd is the smallest value of the number of data points, α, needed for an addition

proj-PCA step to ensure that Theorem 5.3.1 holds w.p. at least (1− 2n−10).

6. We define αdel(ζ) as the smallest value of α so that p̃(α̃, ζ)ϑmaxJ ≥ 1−n−10 where p̃(α̃, ζ)

is defined in Lemma D.2.8. We can compute an explicit value for it by using the fact

that for any x ≤ 1 and r ≥ 1, (1 − x)r ≥ 1 − rx and that
∑6

i=1 e
− α

d2
i ≤ 6e

− α

maxi=1,2...6 d2
i .

We get

αdel(ζ) := ⌈(log 6ϑmaxJ + 11 log n)
8 · 102

(ζλ−)2
max(4.22, 4b2

7)⌉

where b7 := (
√

rγ∗+φ+
√

ζ)2 and φ+ = 1.1732. In words, αdel is the smallest value of the

number of data points, α̃, needed for a deletion proj-PCA step to ensure that Theorem

5.3.1 holds w.p. at least (1− 2n−10).
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Definition 5.4.3 Define the following.

1. ζ+
∗ := rζ

2. define the series {ζk
+}k=0,1,2,···K as follows

ζ+
0 := 1, ζ+

k :=
b + 0.125cζ

1− (ζ+
∗ )2 − (ζ+

∗ )2f − 0.25cζ − b
, for k ≥ 1, (5.1)

where b := Cκ+
s g+ζ+

k−1+C̃(κ+
s )2g+(ζ+

k−1)
2+C ′f(ζ+

∗ )2, κ+
s := 0.15, C := ( 2κ+

s φ+√
1−(ζ+

∗ )2
+φ+),

C ′ := ((φ+)2 + 2φ+√
1−(ζ+

∗ )2
+ 1 + φ+ + κ+

s φ+√
1−(ζ+

∗ )2
+ κ+

s (φ+)2√
1−(ζ+

∗ )2
), C̃ := ((φ+)2 + κ+

s (φ+)2√
1−(ζ+

∗ )2
).

3. define the series {ζ̃+
k }k=1,2,··· ,ϑj

as follows

ζ̃+
k :=

finc(g̃k, h̃k)

fdec(g̃k, h̃k)

where finc(g̃, h̃) := (r + c)ζ[3κ+
s,eφ

+g̃ + [κ+
s,eφ

+ + κ+
s,e(1 + 2φ+) r2ζ2√

1−r2ζ2
]h̃ + [ r2

r+c
ζ +

4rζκ+
s,eφ

+ + 2(r + c)ζ(1 + κ+
s,e

2
)φ+2

]f + 0.2 1
r+c

], and fdec(g̃, h̃) := 1− h̃− 0.2ζ − r2ζ2f −

r2ζ2 − finc(g̃, h̃). Notice that finc(g̃, h̃) is an increasing function of g̃, h̃ and fdec(g̃, h̃) is

a decreasing function of g̃, h̃.

As we will see, ζ+
∗ , ζ+

k , ζ̃+
k are the high probability upper bounds on ζj,∗, ζj,k, ζ̃j,k (defined in

Definition 5.4.8) under the assumptions of Theorem 5.3.1.

Definition 5.4.4 For the addition step, define

1. Φj,k := I − P̂j−1P̂
′
j−1 − P̂j,new,kP̂

′
j,new,k and Φj,0 := I − P̂j−1P̂

′
j−1.

2. φk := maxj maxT :|T |≤s ‖((Φj,k)T
′(Φj,k)T )−1‖2. It is easy to see that φk ≤ 1

1−maxj δs(Φj,k) .

3. Dj,new,k := Φj,kPj,new and Dj,new := Dj,new,0 = Φj,0Pj,new.

For the cluster-PCA step (for deletion), define

1. Ψj,k := I −∑k
i=0 Ĝj,iĜ

′
j,i.

2. Gj,det,k := [Gj,1 · · · , Gj,k−1] and Ĝj,det,k := [Ĝj,1 · · · , Ĝj,k−1]. Notice that Ψj,k = I −

Ĝj,det,k+1Ĝ
′
j,det,k+1.
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3. Gj,undet,k := [Gj,k+1 · · · , Gj,ϑj
].

4. Dj,k := Ψj,k−1Gj,k, Dj,det,k := Ψj,k−1Gj,det,k and Dj,undet,k := Ψj,k−1Gj,undet,k.

Here, Gj,det,k contains the directions that are already detected before the kth step of cluster-

PCA; Gj,k contains the directions that are being detected in the current step; Gj,undet,k contains

the as yet undetected directions.

Definition 5.4.5 Let κs,∗ := maxj κs(Pj−1), κs,new := maxj κs(Pj,new), κs,k := maxj κs(Dj,new,k),

κ̃s,k := maxj κs((I − Pj,newPj,new
′)P̂j,new,k), κs,e := maxj κs(ΦKPj).

Definition 5.4.6

1. Let Dj,k
QR
= Ej,kRj,k denote its QR decomposition. Here, Ej,k is a basis matrix while

Rj,k is upper triangular. 2

2. Let Ej,k,⊥ be a basis matrix for the orthogonal complement of span(Ej,k) = span(Dj,k).

To be precise, Ej,k,⊥ is a n× (n− c̃j,k) basis matrix that satisfies Ej,k,⊥
′Ej,k = 0.

3. Using Ej,k and Ej,k,⊥, define Ãj,k, Ãj,k,⊥, H̃j,k, H̃j,k,⊥ and B̃j,k as

Ãj,k :=
1

α̃

∑

t∈Ĩj,k

Ej,k
′Ψj,k−1LtLt

′Ψj,k−1Ej,k

Ãj,k,⊥ :=
1

α̃

∑

t∈Ĩj,k

Ej,k,⊥
′Ψj,k−1LtLt

′Ψj,k−1Ej,k,⊥

H̃j,k :=
1

α̃

∑

t∈Ĩj,k

Ej,k
′Ψj,k−1(etet

′ − Ltet
′ − etLt

′)Ψj,k−1Ej,k

H̃j,k,⊥ :=
1

α̃

∑

t∈Ĩj,k

Ej,k,⊥
′Ψj,k−1(etet

′ − Ltet
′ − etLt

′)Ψj,k−1Ej,k,⊥

B̃j,k :=
1

α̃

∑

t∈Ĩj,k

Ej,k,⊥
′Ψj,k−1L̂tL̂

′
tΨj,k−1Ej,k

=
1

α̃

∑

t∈Ĩj,k

Ej,k,⊥
′Ψj,k−1(Lt − et)(Lt

′ − et
′)Ψj,k−1Ej,k

2Notice that 0 <
√

1 − r2ζ2 ≤ σi(Rj,k) by Lemma D.2.3, therefore, Rj,k is invertible.
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4. Define

Ãj,k :=

[

Ej,k Ej,k,⊥

]







Ãj,k 0

0 Ãj,k,⊥













Ej,k
′

Ej,k,⊥
′







H̃j,k :=

[

Ej,k Ej,k,⊥

]







H̃j,k B̃′
j,k

B̃j,k H̃j,k,⊥













Ej,k
′

Ej,k,⊥
′






(5.2)

5. From the above, it is easy to see that

Ãj,k + H̃j,k =
1

α̃

∑

t∈Ĩj,k

Ψj,k−1L̂tL̂
′
tΨj,k−1.

6. Recall from Algorithm 4 that

Ãj,k + H̃j,k =
1

α̃

∑

t∈Ĩj,k

Ψj,k−1L̂tL̂
′
tΨj,k−1

EV D
=

[

Ĝj,k Ĝj,k,⊥

]







Λj,k 0

0 Λj,k,⊥













Ĝ′
j,k

Ĝ′
j,k,⊥







is the EVD of Ãj,k + H̃j,k. Here Λk is a c̃j,k × c̃j,k diagonal matrix.

Definition 5.4.7 Let P̂j,∗ := P̂j−1 = P̂(tj−1). Recall that Pj,∗ := P(tj−1) = Pj−1. In the sequel,

we use the subscript ∗ to denote the quantity at t = tj − 1.

Definition 5.4.8 (Subspace estimation errors)

1. Recall that the subspace error at time t is SE(t) := ‖(I − P̂(t)P̂
′
(t))P(t)‖2.

2. Define

ζj,∗ := ‖(I − P̂j,∗P̂
′
j,∗)Pj,∗‖2.

This is the subspace error at t = tj − 1, i.e. ζj,∗ = SE(tj−1).

3. For k = 0, 1, 2, · · · ,K, define

ζj,k := ‖(I − P̂j−1P̂
′
j−1 − P̂j,new,kP̂

′
j,new,k)Pj,new‖2.

This is the error in estimating span(Pj,new) after the kth iteration of the addition step.
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4. For k = 1, 2, · · · , ϑj , define

ζ̃j,k := ‖(I −
k

∑

i=1

Ĝj,iĜ
′
j,i)Gj,k‖2.

This is the error in estimating span(Gj,k) after the kth iteration of the cluster-PCA step.

Remark 5.4.9 (Notational issue) Notice that ζ is a given scalar satisfying the bound given

in Theorem 5.3.1, while ζj,k, ζj,∗ and ζ̃j,k are as defined above. Since the basis matrix estimates

are functions of the L̂t’s, which in turn are depend on the Lt’s and Lt = P(t)at, thus, ζj,k, ζj,∗

and ζ̃j,k are functions of the at’s. Thus, ζj,k, ζj,∗ and ζ̃j,k are, in fact, random variables.

Remark 5.4.10

1. Notice that ζj,0 = ‖Dj,new‖2, ζj,k = ‖Dj,new,k‖2 and ζ̃j,k = ‖(I − ĜkĜ
′
k)Dj,k‖2 =

‖Ψj,kGj,k‖2.

2. Notice from the algorithm that (i) P̂j,new,k is perpendicular to P̂j,∗ = P̂j−1; and (ii) Ĝj,k

is perpendicular to [Ĝj,1, Ĝj,2, . . . Ĝj,k−1].

3. For t ∈ Ij,k, P(t) = Pj = [(Pj−1 \ Pj,old), Pj,new], P̂(t) = [P̂j−1 P̂j,new,k] and

SE(t) = ‖(I − P̂j−1P̂
′
j−1 − P̂j,new,kP̂

′
j,new,k)Pj‖2

≤‖(I − P̂j−1P̂
′
j−1 − P̂j,new,kP̂

′
j,new,k)[Pj−1 Pj,new]‖2

≤ ζj,∗ + ζj,k

for k = 1, 2 . . . K. The last inequality uses the first item of this remark.

4. For t ∈ Ĩj,k, P(t) = Pj , P̂(t) = [P̂j−1 P̂j,new,K ] and

SE(t) = SE(tj+Kα−1) ≤ ζj,∗ + ζj,K

5. For t ∈ Ĩj,ϑj+1, P(t) = Pj = [Gj,1, · · · , Gj,ϑj
], P̂(t) = P̂j = [Ĝj,1, · · · , Ĝj,ϑj

], and

SE(t) = ζj+1,∗ ≤
ϑj
∑

k=1

ζ̃j,k

The last inequality uses the first item of this remark.
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Remark 5.4.11 Recall that et := Ŝt − St. Notice from Algorithm 4 that

1. et = Lt − L̂t.

2. If T̂t = Tt, then et = ITt [(Φ(t))Tt

′(Φ(t))Tt ]
−1ITt

′Φ(t)P(t)at. This follows using the defini-

tion of Ŝt given in step 1d of the algorithm and the fact that (Φ(t))
′
T Φ(t) = (Φ(t)IT )′Φ(t) =

I ′T Φ(t) for any set T . Thus, for t ∈ [tj, tj+1 − 1],

et = ITt [(Φ(t))Tt

′(Φ(t))Tt ]
−1ITt

′Φ(t)Pjat

= ITt [(Φ(t))Tt

′(Φ(t))Tt ]
−1ITt

′Φ(t)[Pj,∗at,∗ + Pj,newat,new] (5.3)

with

Φ(t) =



























Φj,k−1 t ∈ Ij,k, k = 1, 2 . . . K

Φj,K t ∈ Ĩj,k, k = 1, 2 . . . ϑj

Φj+1,0 t ∈ Ĩj,ϑj+1

Definition 5.4.12 Define the random variable

Xj,k1,k2 := {a1, a2, · · · , atj+k1α+k2α̃−1}.

Recall that at’s are mutually independent over t.

Definition 5.4.13 Define the set Γ̌j,k1,k2 as follows.

Γ̌j,k,0 := {Xj,k,0 : ζj,k ≤ ζ+
k , and T̂t = Tt and et satisfies (5.3)

for all t ∈ Ij,k}, k = 1, 2, . . . K, j = 1, 2, 3, . . . J

Γ̌j,K,k := {Xj,K,k : ζ̃j,k ≤ c̃j,kζ, and T̂t = Tt and et satisfies (5.3)

for all t ∈ Ĩj,k}, k = 1, 2, . . . ϑj, j = 1, 2, 3, . . . J

Γ̌j,K,ϑj+1 := {Xj+1,0,0 : T̂t = Tt and et satisfies (5.3)

for all t ∈ Ĩj,ϑj+1}, j = 1, 2, 3, . . . J
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Define the set Γj,k1,k2 as follows.

Γ1,0,0 := {X1,0,0 : ζ1,∗ ≤ rζ, and T̂t = Tt and et satisfies (5.3) for all t ∈ [ttrain, t1 − 1]},

Γj,k,0 := Γj,k−1,0 ∩ Γ̌j,k,0, k = 1, 2, . . . K, j = 1, 2, 3, . . . J

Γj,K,k := Γj,K,k−1 ∩ Γ̌j,K,k, k = 1, 2, . . . ϑj , j = 1, 2, 3, . . . J

Γj+1,0,0 := Γj,K,ϑj
∩ Γ̌j,K,ϑj+1, j = 1, 2, 3, . . . J

Recall from the notation section that the event Γe
j,k1,k2

:= {Xj,k1,k2 ∈ Γj,k1,k2}.

Remark 5.4.14 Notice that the subscript j always appears as the first subscript, while k is

the last one. At many places in this paper, we remove the subscript j for simplicity. Whenever

there is only one subscript, it refers to the value of k, e.g., Φ0 refers to Φj,0, P̂new,k refers to

P̂j,new,k and so on.

5.4.1 Proof Outline of Theorem 5.3.1

The first part of the proof that analyzes the projected CS step and the addition step is

essentially the same as that for ReProCS. The only difference is that, now, ζ+
∗ = rζ instead of

ζ+
∗ = (r0 + (j − 1)c)ζ. In Lemma 5.4.15, the final conclusions for this part are summarized:

it shows that, for all k = 1, 2, . . . K, ζ+
k decays roughly exponentially with k and it bounds

the probability of Γe
j,k,0 given Γe

j,k−1,0. The second part of the proof analyzes the projected

CS step and the cluster-PCA step. The final conclusion for this part is summarized in Lemma

5.4.16: it bounds the probability of Γe
j,K,k given Γe

j,K,k−1. Theorem 5.3.1 follows essentially by

applying Lemmas 5.4.16 and 5.4.15 for each j and k and using Lemma 2.3.2.

Lemma 5.4.16, in turn, follows by combining the results of Lemma D.2.2 (which shows exact

support recovery and bounds the sparse recovery error for t ∈ Ĩj,k conditioned on Γe
j,K,k−1),

and Lemma D.2.8 (which bounds the subspace recovery error at the kth step of cluster-PCA

conditioned on Γe
j,K,k−1).

Lemma D.2.2 uses the result of Lemma D.2.1 which bounds the RIC of Φk in terms of ζ∗, ζk

and the denseness coefficients of P∗ and Pnew. Lemma D.2.8 is obtained as follows. In Lemma

D.2.4, we show that, under the theorem’s assumptions, ζ̃+
k ≤ c̃j,kζ. In Lemma D.2.6, we bound
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Table 5.1 Comparing and contrasting the addition proj-PCA step and pro-

j-PCA used in the deletion step (cluster-PCA)

kth iteration of addition proj-PCA

done at t = tj + kα− 1

goal: keep improving estimates of span(Pj,new)

compute P̂j,new,k by proj-PCA on [L̂t : t ∈ Ij,k] with P = P̂j−1

start with ‖(I − P̂j−1P̂
′
j−1)Pj−1‖2 ≤ rζ and ζj,k−1 ≤ ζ+

k−1 ≤ 0.6k−1 + 0.4cζ

need small gj,k which is the average of the condition number of Cov(P ′
j,newLt) over t ∈ Ij,k

no undetected subspace

ζj,k is the subspace error in estimating span(Pj,new) after the kth step

end with ζj,k ≤ ζ+
k ≤ 0.6k + 0.4cζ w.h.p.

stop when k = K with K chosen so that ζj,K ≤ cζ

after Kth iteration: P̂(t) ← [P̂j−1 P̂j,new,K ] and SE(t) ≤ (r + c)ζ

kth iteration of cluster-PCA in the deletion step

done at t = tj + Kα + ϑjα̃− 1

goal: re-estimate span(Pj) and thus “delete” span(Pj,old)

compute Ĝj,k by proj-PCA on [L̂t : t ∈ Ĩj,k] with P = Ĝj,det,k = [Ĝj,1, · · · , Ĝj,k−1]

start with ‖(I − Ĝj,det,kĜ
′
j,det,k)Gj,det,k‖2 ≤ rζ and ζj,K ≤ cζ

need small g̃j,k which is the maximum of the condition number of Cov(G′
j,kLt) over t ∈ Ĩj,k

extra issue: ensure perturbation due to span(Gj,undet,k) is small; need small h̃j,k to ensure it

ζ̃j,k is the subspace error in estimating span(Gj,k) after the kth step

end with ζ̃j,k ≤ c̃j,kζ w.h.p.

stop when k = ϑj and ζ̃j,k ≤ c̃j,kζ for all k = 1, 2, · · · , ϑj

after ϑth
j iteration: P̂(t) ← [Ĝj,1, · · · , Ĝj,ϑj

] and SE(t) ≤ rζ

ζ̃k in terms of λmin(Ak), λmax(Ak,⊥) and ‖Hk‖2 using Lemma 2.2.1. Next, in Lemma D.2.7,

(i) we use Lemma D.2.2 and the Hoeffding corollaries (Corollaries 2.3.4 and 2.3.5) to bound

each of these terms and (ii) then we use Lemma D.2.6 and these bounds to bound ζ̃k by ζ̃+
k

with a certain probability conditioned on Γe
j,K,k−1. Finally, Lemma D.2.8 follows by combining

Lemma D.2.4 and Lemma D.2.7.

Our strategy for analyzing cluster-PCA and hence for proving Theorem 5.3.1 is a general-

ization of that used to analyze the kth addition proj-PCA step for ReProCS. We discuss this

in Table 5.1.
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5.4.2 Key Lemmas

The theorem is a direct consequence of Lemmas 5.4.15 and 5.4.16 given below.

Lemma 5.4.15 is a slight modification of Lemma 4.4.21. It summarizes the final conclusions

of the addition step.

Lemma 5.4.15 (Final lemma for addition step) Assume that all the conditions in The-

orem 5.3.1 holds. Also assume that P(Γe
j,k−1,0) > 0. Then

1. ζ+
0 = 1, ζ+

k ≤ 0.6k + 0.4cζ for all k = 1, 2, . . . K;

2. P(Γe
j,k,0 |Γe

j,k−1,0) ≥ pk(α, ζ) ≥ pK(α, ζ) for all k = 1, 2, . . . K.

where ζ+
k is defined in Definition 5.4.3 and pk(α, ζ) is defined in Lemma 4.4.16.

The proof of the above lemma follows using the exact same approach as in the proof of

Lemma 4.4.21 but with ζ+
∗ = rζ instead of (r0 + (j − 1)cmax)ζ everywhere. We give the proof

outline in Appendix D.

Lemma 5.4.16 summarizes the final conclusions for the cluster-PCA step. It is proved using

lemmas given in Sec D.2.

Lemma 5.4.16 (Final lemma for cluster-PCA) Assume that all the conditions in Theo-

rem 5.3.1 hold. Also assume that P(Γe
j,K,k−1) > 0. Then,

1. for all k = 1, 2, . . . ϑj, P(Γe
j,K,k | Γe

j,K,k−1) ≥ p̃(α̃, ζ) where p̃(α̃, ζ) is defined in Lemma

D.2.8;

2. P(Γe
j+1,0,0 | Γe

j,K,ϑj
) = 1.

proof Notice that P(Γe
j,K,k | Γe

j,K,k−1) = P(ζ̃k ≤ c̃kζ and T̂t = Tt, and et satisfies (5.3) for all t ∈

Ĩj,k | Γe
j,K,k−1) and P(Γe

j+1,0,0 | Γe
j,K,ϑj

) = P(T̂t = Tt and et satisfies (5.3) for all t ∈ Ij,ϑj+1).

The first claim of the lemma follows by combining Lemma D.2.8 and the last claim of Lemma

D.2.2, both given below in Sec D.2. The second claim follows using the last claim of Lemma

D.2.2. �
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Remark 5.4.17 Under the assumptions of Theorem 5.3.1, it is easy to see that the following

holds.

1. For any k = 1, 2 . . . K, Γe
j,k,0 implies that (i) ζj,∗ ≤ ζ+

∗ := rζ and (ii) ζj,k′ ≤ 0.6k′
+ 0.4cζ

for all k′ = 1, 2, . . . k

• (i) follows from the definition of Γe
j,k,0 and ζj,∗ ≤

∑ϑj−1

k=1 ζ̃j−1,k′ ≤ ∑ϑj−1

k=1 c̃j−1,k′ζ =

rj−1ζ ≤ rζ = ζ+
∗ ; and (ii) follows from the definition of Γe

j,k,0 and the first claim of

Lemma 5.4.15.

2. For any k = 1, 2 . . . ϑj + 1, Γe
j,K,k implies (i) ζj,∗ ≤ ζ+

∗ , (ii) ζj,k′ ≤ 0.6k′
+ 0.4cζ for

all k′ = 1, 2, . . . K, (iii) ζj,K ≤ cζ, (iv) ‖Φj,KPj‖2 ≤ (r + c)ζ, (v) ζ̃j,k′ ≤ c̃j,k′ζ for

k′ = 1, 2, . . . k and (vi)
∑k

k′=1 ζ̃j,k′ ≤ rjζ ≤ rζ.

• (i) and (ii) follow because Γe
j,K,0 ⊆ Γe

j,K,k, (iii) follows from (ii) using the definition

of K, (iv) follows from (i) and (iii) using ‖Φj,KPj‖2 ≤ ‖Φj,K [Pj,∗, Pj,new]‖2 ≤

ζj,∗ + ζj,K, and (v) follows from the definition of Γe
j,K,k.

3. Γe
J+1,0,0 implies (i) ζj,∗ ≤ ζ+

∗ for all j, (ii) ζj,k ≤ 0.6k + 0.4cζ for all k = 1, · · · ,K and

all j, (iii) ζj,K ≤ cζ for all j.

5.4.3 Proof of Theorem 5.3.1

The theorem is a direct consequence of Lemmas 5.4.15 and 5.4.16 and Lemma 2.3.2.

Notice that Γe
j,0,0 ⊇ Γe

j,1,0 · · · ⊇ Γe
j,K,0 ⊇ Γe

j,K,1 ⊇ Γe
j,K,2 · · · ⊇ Γe

j,K,ϑ ⊇ Γe
j+1,0,0. Thus, by

Lemma 2.3.2,

P(Γe
j+1,0,0|Γe

j,0,0) = P(Γe
j+1,0,0|Γe

j,K,ϑ)
ϑ

∏

k=1

P(Γe
j,K,k|Γe

j,K,k−1)
K
∏

k=1

P(Γe
j,k,0|Γe

j,k−1,0)

and P(ΓJ+1,0,0|Γ1,0,0) =
∏J

j=1 P(Γe
j+1,0,0|Γe

j,0,0). Using Lemmas 5.4.15 and 5.4.16, and the

fact that pk(α, ζ) ≥ pK(α, ζ), we get P(Γe
J+1,0,0|Γ1,0,0) ≥ pK(α, ζ)KJ p̃(α̃, ζ)ϑmaxJ . Also,

P(Γe
1,0,0) = 1. This follows by the assumption on P̂0 and Lemma D.2.2. Thus, P(Γe

J+1,0,0) ≥

pK(α, ζ)KJ p̃(α̃, ζ)ϑmaxJ .



www.manaraa.com

71

Using the definitions of αadd(ζ) and αdel(ζ) and α ≥ αadd and α̃ ≥ αdel, P(Γe
J+1,0,0) ≥

pK(α, ζ)KJ p̃(α̃, ζ)ϑmaxJ ≥ (1− n−10)2 ≥ 1− 2n−10.

The event Γe
J+1,0,0 implies that T̂t = Tt and et satisfies (5.3) for all t < tJ+1. Using

Remark 5.4.10 and the third claim of Remark 5.4.17, Γe
J+1,0,0 implies that all the bounds on

the subspace error hold. Using these, Remark 5.4.11, ‖at,new‖2 ≤
√

cγnew,k and ‖at‖2 ≤
√

rγ∗,

Γe
J+1,0,0 implies that all the bounds on ‖et‖2 hold (the bounds are obtained in in Lemmas D.2.2

and D.1.2).

Thus, all conclusions of the the result hold w.p. at least 1− 2n−10.

5.5 Experimental Results

The simulated data is generated as follows.

The measurement matrixMt := [M1,M2, · · · ,Mt] is of size 2048× 5200. It can be decom-

posed as a sparse matrix St := [S1, S2, · · · , St] plus a low rank matrix Lt := [L1, L2, · · · , Lt].

The sparse matrix St := [S1, S2, · · · , St] is generated as follows. For 1 ≤ t ≤ ttrain = 200,

St = 0. For ttrain < t ≤ 5200, St has s nonzero elements. The initial support T0 = {1, 2, . . . s}.

Every ∆ time instants we increment the support indices by 1. For example, for t ∈ [ttrain +

1, ttrain + ∆ − 1], Tt = T0, for t ∈ [ttrain + ∆, ttrain + 2∆ − 1], Tt = {2, 3, . . . s + 1} and so on.

Thus, the support set changes in a highly correlated fashion over time and this results in the

matrix St being low rank. The larger the value of ∆, the smaller will be the rank of St (for

t > ttrain + ∆). The signs of the nonzero elements of St are P ′
1→21 with equal probability and

the magnitudes are uniformly distributed between 2 and 3. Thus, Smin = 2.

The low rank matrix Lt := [L1, L2, · · · , Lt] where Lt := P(t)at is generated as follows: There

are a total of J = 2 subspace change times, t1 = 301 and t2 = 2501. r0 = 36, c1,new = c2,new = 1

and c1,old = c2,old = 3. Let U be an 2048 × (r0 + c1,new + c2,new) orthonormalized random

Gaussian matrix. For 1 ≤ t ≤ t1 − 1, P(t) = P0 has rank r0 with P0 = U[1,2,··· ,36]. For

t1 ≤ t ≤ t2 − 1, P(t) = P1 = [P0 \ P1,old P1,new] has rank r1 = r0 + c1,new − c1,old = 34 with

P1,new = U[37] and P1,old = U[9,18,36]. For t ≥ t2, P(t) = P2 = [P1 \ P2,old P2,new] has rank

r2 = r1 + c2,new − c2,old = 32 with P2,new = U[38] and P1old = U[8,17,35]. at is independent over
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t. The various (at)i’s are also mutually independent for different i. For 1 ≤ t < t1, we let (at)i

be uniformly distributed between −γi,t and γi,t, where

γi,t =























































400 if i = 1, 2, · · · , 9,∀t,

30 if i = 10, 11, · · · , 18,∀t.

2 if i = 19, 20, · · · , 27,∀t.

1 if i = 28, 29 · · · , 36,∀t.

(5.4)

For t1 ≤ t < t2, at,∗ is an r0 − c1,old length vector, at,new is a c1,new length vector and Lt :=

P(t)at = P1at = (P0 \ P1,old)at,∗,nz + P1,newat,new. Now, (at,∗,nz)i is uniformly distributed

between −γi,t and γi,t for i = 1, 2, · · · , 35 and at,new is uniformly distributed between −γnew,t

and γnew,t, where

γi,t =























































400 if i = 1, 2, · · · , 8,∀t,

30 if i = 9, 10, · · · , 16∀t.

2 if i = 17, 18, · · · , 24,∀t.

1 if i = 25, 26, · · · , 33,∀t.

γnew,t =



















1.1k−1 if t1 + (k − 1)α ≤ t ≤ t1 + kα− 1, k = 1, 2, 3, 4,

1.14−1 = 1.331 if t ≥ t1 + 4α.

(5.5)

For t ≥ t2, at,∗ is an r1− c2,old length vector, at,new is a c2,new length vector and Lt := P(t)at =

P2at = [P0 \P1,old P1,new]at,∗ +P2,newat,new. Also, (at,∗)i is uniformly distributed between −γi,t

and γi,t for i = 1, 2, · · · , r1 − c2,old and at,new is uniformly distributed between −γnew,t and

γnew,t where

γi,t =







































































400 if i = 1, 2, · · · , 7,∀t,

30 if i = 8, 9, · · · , 14,∀t.

2 if i = 15, 16, · · · , 21,∀t.

1.331 if i = 22,∀t.

1 if i = 23, 24, · · · , 31,∀t.

(5.6)
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γnew,t =



















1.1k−1 if t2 + (k − 1)α ≤ t ≤ t2 + kα− 1, k = 1, 2, · · · , 7,

1.17−1 = 1.7716 if t ≥ t2 + 7α.

(5.7)

Thus for the above model, Smin = 2, γ∗ = 400, γnew = 1, λ+ = 53333, λ− = 0.3333 and

f := λ+

λ− = 1.6 × 105. One way to get the clusters of {1, 2, · · · , rj} is as follows.

1. For t1 ≤ t < t2 with j = 1, let G1,(1) = {1, 2, · · · , 8}, G1,(2) = {9, 10, · · · , 16} and

G1,(3) = {17, 18, · · · , 34}. Thus, c̃1,1 = c̃1,2 = 8, c̃1,3 = 18, g̃j,1 = g̃j,2 = 1, g̃j,3 = 4,

h̃j,1 = 0.0056, h̃j,2 = 0.0044.

2. For t ≥ t2 with j = 2, let G1,(1) = {1, 2, · · · , 7}, G1,(2) = {8, 10, · · · , 14} and G1,(3) =

{17, 18, · · · , 32}. Thus, c̃1,1 = c̃1,2 = 7, c̃1,3 = 16, g̃j,1 = g̃j,2 = 1, g̃j,3 = 4, h̃j,1 = 0.0056,

h̃j,2 = 0.0044.

3. Therefore, g̃max = 4, h̃max = 0.0056 and c̃min = 7.

We used Lttrain +Nttrain as the training sequence to estimate P̂0. Here Nttrain =

[N1, N2, · · · , Nttrain ] is i.i.d. random noise with each (Nt)i uniformly distributed between −10−3

and 10−3. This is done to ensure that span(P̂0) 6= span(P0) but only approximates it.

For Fig. 5.3 and Fig. 5.4, we used s = 20. We used ∆ = 10 for Fig. 5.3 and ∆ = 50

for Fig. 5.4. Because of the correlated support change, the 2048 × t sparse matrix St =

[S1, S2, · · · , St] is rank deficient in either case, e.g. for Fig. 5.3, St has rank 29, 39, 49, 259 at

t = 300, 400, 500, 2600; for Fig. 5.4, St has rank 21, 23, 25, 67 at t = 300, 400, 500, 2600. We

plot the subspace error SE(t) and the normalized error for St,
‖Ŝt−St‖2

‖St‖2
averaged over 100 Monte

Carlo simulations.

As can be seen from Fig. 5.3 and Fig. 5.4, the subspace error SE(t) of ReProCS and

ReProCS-cPCA decreased exponentially and stabilized. Furthermore, ReProCS-cPCA out-

performs over ReProCS greatly when deletion steps are done (i.e., at t = 2400 and 4600). The

averaged normalized error for St followed a similar trend.

We also compared against PCP [2]. At every t = tj + 4kα, we solved (1.1) with λ =

1/
√

max(n, t) as suggested in [2] to recover St and Lt. We used the estimates of St for the last



www.manaraa.com

74

0 1000 2000 3000 4000 5000
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

time →

lo
g 1

0
(‖
(I

−
P̂
(t
)
P̂
(t
)
′)
P
(t
)‖

2
)

 

 

ReProCS
ReProCS−cPCA

(a) subspace error, SE(t)

0 1000 2000 3000 4000 5000
−8

−7

−6

−5

−4

−3

−2

time →

lo
g 1

0
(‖
Ŝ
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Figure 5.3 ReProCS-cPCA with r0 = 36, s = maxt |Tt| = 20 and ∆ = 10.
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Figure 5.4 ReProCS-cPCA with r0 = 36, s = maxt |Tt| = 20 and ∆ = 50
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4α frames as the final estimates of Ŝt. So, the Ŝt for t = tj + 1, . . . tj + 4α is obtained from

PCP done at t = tj + 4α, the Ŝt for t = tj + 4α + 1, . . . tj + 8α is obtained from PCP done at

t = tj + 8α and so on. Because of the correlated support change, the error of PCP was larger

in both cases.

We also plot the ratio
‖ITt

′Dj,new,k‖2

‖Dj,new,k‖2
at the projection PCA times. This serves as a proxy

for κs(Dj,new,k) (which has exponential computational complexity). As can be seen from Fig.

5.3 and Fig. 5.4, this ratio is less than 1 and it becomes larger when ∆ increases (Tt becomes

more correlated over t).

We implemented ReProCS-cPCA using Algorithm 4 with α = 100, α̃ = 200 and K = 15.

The algorithm is not very sensitive to these choices. Also, we let ξ = ξt and ω = ωt vary

with time. Recall that ξt is the upper bound on ‖βt‖2. We do not know βt. All we have

is an estimate of βt from t − 1, β̂t−1 = (I − P̂t−1P̂
′
t−1)L̂t−1. We used a value a little larger

than ‖β̂t−1‖2; we let ξt = 2‖β̂t−1‖2. The parameter ωt is the support estimation threshold.

One reasonable way to pick this is to use a percentage energy threshold of Ŝt,cs [40]. For a

vector v, define the 99%-energy set of v as T0.99(v) := {i : |vi| ≥ v0.99} where the 99% energy

threshold, v0.99, is the largest value of |vi| so that ‖vT0.99‖22 ≥ 0.99‖v‖22. It is computed by

sorting |vi| in non-increasing order of magnitude. One keeps adding elements to T0.99 until

‖vT0.99‖22 ≥ 0.99‖v‖22 . We used ωt = 0.5(Ŝt,cs)
0.99.
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Algorithm 4 Recursive Projected CS with cluster-PCA (ReProCS-cPCA)

Parameters: algorithm parameters: ξ, ω, α, α̃, K, model parameters: tj, r0, cj,new, ϑj and

c̃j,i

Input: n × 1 vector, Mt, and n × r0 basis matrix P̂0. Output: n × 1 vectors Ŝt and L̂t,

and n× r(t) basis matrix P̂(t).

Initialization: Let P̂(ttrain) ← P̂0. Let j ← 1, k ← 1. For t > ttrain, do the following:

1. Estimate Tt and St via Projected CS:

(a) Nullify most of Lt: compute Φ(t) ← I − P̂(t−1)P̂
′
(t−1), yt ← Φ(t)Mt

(b) Sparse Recovery: compute Ŝt,cs as the solution of minx ‖x‖1 s.t. ‖yt − Φ(t)x‖2 ≤ ξ

(c) Support Estimate: compute T̂t = {i : |(Ŝt,cs)i| > ω}
(d) LS Estimate of St: compute (Ŝt)T̂t

= ((Φt)T̂t
)†yt, (Ŝt)T̂ c

t
= 0

2. Estimate Lt. L̂t = Mt − Ŝt.

3. Update P̂(t):

(a) If t 6= tj + qα− 1 for any q = 1, 2, . . . K and t 6= tj + Kα + ϑjα̃− 1,

i. set P̂(t) ← P̂(t−1)

(b) Addition: Estimate span(Pj,new) iteratively using proj-PCA: If t = tj +

kα− 1

i. P̂j,new,k ← proj-PCA([L̂t; t ∈ Ij,k], P̂j−1, cj,new)

ii. set P̂(t) ← [P̂j−1 P̂j,new,k].

iii. If k = K, reset k ← 1; else increment k ← k + 1.

(c) Deletion: Estimate span(Pj) by cluster-PCA: If t = tj + Kα + ϑjα̃− 1,

i. For i = 1, 2, · · · , ϑj ,

• Ĝj,i ← proj-PCA([L̂t; t ∈ Ĩj,k], [Ĝj,1, Ĝj,2, . . . Ĝj,i−1], c̃j,i)

End for

ii. set P̂j ← [Ĝj,1, · · · , Ĝj,ϑj
] and set P̂(t) ← P̂j.

iii. increment j ← j + 1.
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CHAPTER 6. Conclusions and Future Work

We studied the problem of recursive sparse recovery in the presence of large but structured

noise (noise lying in a “slowly changing” low dimensional subspace). We introduced ReProCS

and ReProCS with cluster-PCA (ReProCS-cPCA) algorithm that addresses some of the limi-

tations of PCP [2]. ReProCS assumes that the subspace in which the most recent several Lt’s

lie can only grow over time and hence it needs to assume a bound on the total number of

subspace changes, J . Unlike ReProCS, ReProCS-cPCA does not bound the number of allowed

subspace changes, J , as long as the delay between change times is increased in proportion to

log J . Under mild assumptions, we showed that, w.h.p., ReProCS and ReProCS-cPCA can

exactly recover the support set of St at all times; and the reconstruction errors of both St and

Lt are upper bounded by a time-invariant and small value at all times.

In ongoing work, we are studying the undersampled measurements case. On the other

hand, open questions also include (i) how to analyze a practical version of ReProCS-cPCA

(which does not assume knowledge of signal model parameters), and (ii) how to study the

correlated at’s case (e.g. the case where at’s satisfy a linear random walk model). The starting

point for (ii) would be to try to use the matrix Azuma inequality [25] instead of Hoeffdding.
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APPENDIX A. Proof of the Lemmas and Corollaries in Chapter 2

A.1 Proof of Lemma 2.2.4

proof: Because P , Q and P̂ are basis matrix, P ′P = I, Q′Q = I and P̂ ′P̂ = I.

1. Using P ′P = I and ‖M‖22 = ‖MM ′‖2, ‖(I − P̂ P̂ ′)PP ′‖2 = ‖(I − P̂ P̂ ′)P‖2. Similarly,

‖(I−PP ′)P̂ P̂ ′‖2 = ‖(I−PP ′)P̂‖2. Let D1 = (I− P̂ P̂ ′)PP ′ and let D2 = (I−PP ′)P̂ P̂ ′.

Notice that ‖D1‖2 =
√

λmax(D
′
1D1) =

√

‖D′
1D1‖2 and ‖D2‖2 =

√

λmax(D
′
2D2) =

√

‖D′
2D2‖2. So, in order to show ‖D1‖2 = ‖D2‖2, it suffices to show that ‖D′

1D1‖2 =

‖D′
2D2‖2. Let P ′P̂

SV D
= UΣV ′. Then, D′

1D1 = P (I−P ′P̂ P̂ ′P )P ′ = PU(I−Σ2)U ′P ′ and

D′
2D2 = P̂ (I−P̂ ′PP ′P̂ )P̂ ′ = P̂ V (I−Σ2)V ′P̂ ′ are the compact SVD’s of D′

1D1 and D′
2D2

respectively. Therefore, ‖D′
1D1‖ = ‖D′

2D2‖2 = ‖I −Σ2‖2 and hence ‖(I − P̂ P̂ ′)PP ′‖2 =

‖(I − PP ′)P̂ P̂ ′‖2.

2. ‖PP ′ − P̂ P̂ ′‖2 = ‖PP − P̂ P̂ ′PP ′ + P̂ P̂ ′PP ′ − P̂ P̂ ′‖2 ≤ ‖(I − P̂ P̂ ′)PP ′‖2 + ‖(I −

PP ′)P̂ P̂ ′‖2 = 2ζ∗.

3. Since Q′P = 0, then ‖Q′P̂‖2 = ‖Q′(I − PP ′)P̂‖2 ≤ ‖(I − PP ′)P̂‖2 = ζ∗.

4. Let M = (I − P̂ P̂ ′)Q). Then M ′M = Q′(I − P̂ P̂ ′)Q and so σi((I − P̂ P̂ ′)Q) =
√

λi(Q′(I − P̂ P̂ ′)Q). Clearly, λmax(Q
′(I−P̂ P̂ ′)Q) ≤ 1. By Weyl’s Theorem, λmin(Q

′(I−

P̂ P̂ ′)Q) ≥ 1 − λmax(Q
′P̂ P̂ ′Q) = 1 − ‖Q′P̂‖22 ≥ 1 − ζ2

∗ . Therefore,
√

1− ζ2∗ ≤ σi((I −

P̂ P̂ ′)Q) ≤ 1.

�
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A.2 Proof of Lemma 2.3.1

proof: It is easy to see that P(Be, Ce) = E[IB(X,Y )IC(X)]. If E[IB(X,Y )|X] ≥ p for all

X ∈ C, this means that E[IB(X,Y )|X]IC(X) ≥ pIC(X). This, in turn, implies that

P(Be, Ce) = E[IB(X,Y )IC(X)] = E[E[IB(X,Y )|X]IC(X)] ≥ pE[IC(X)].

Recall from Definition 1.1.3 that P(Be|X) = E[IB(X,Y )|X] and P(Ce) = E[IC(X)]. Thus, we

conclude that if P(Be|X) ≥ p for all X ∈ C, then P(Be, Ce) ≥ pP(Ce). Using the definition of

P(Be|Ce), the claim follows. �

A.3 Proof of Corollary 2.3.4

proof:

1. Since, for any X ∈ C, conditioned on X, the Zt’s are independent, the same is also true

for Zt − g(X) for any function of X. Let Yt := Zt − E(Zt|X). Thus, for any X ∈ C,

conditioned on X, the Yt’s are independent. Also, clearly E(Yt|X) = 0. Since for all

X ∈ C, P(b1I � Zt � b2I|X) = 1 and since λmax(.) is a convex function, and λmin(.) is

a concave function, of a Hermitian matrix, thus b1I � E(Zt|X) � b2I w.p. one for all

X ∈ C. Therefore, P(Y 2
t � (b2 − b1)

2I|X) = 1 for all X ∈ C. Thus, for Theorem 2.3.3,

σ2 = ‖∑

t(b2 − b1)
2I‖2 = α(b2 − b1)

2. For any X ∈ C, applying Theorem 2.3.3 for {Yt}’s

conditioned on X, we get that, for any ǫ > 0,

P(λmax(
1

α

∑

t

Yt) ≤ ǫ|X) > 1− n exp(− αǫ2

8(b2 − b1)2
) for all X ∈ C

By Weyl’s theorem, λmax(
1
α

∑

t Yt) = λmax(
1
α

∑

t(Zt − E(Zt|X)) ≥ λmax(
1
α

∑

t Zt) +

λmin(
1
α

∑

t−E(Zt|X)). Since λmin(
1
α

∑

t−E(Zt|X)) = −λmax(
1
α

∑

t E(Zt|X)) ≥ −b4,

thus λmax(
1
α

∑

t Yt) ≥ λmax(
1
α

∑

t Zt)− b4. Therefore,

P(λmax(
1

α

∑

t

Zt) ≤ b4 + ǫ|X) > 1− n exp(− αǫ2

8(b2 − b1)2
) for all X ∈ C

2. Let Yt = E(Zt|X)− Zt. As before, E(Yt|X) = 0 and conditioned on any X ∈ C, the Yt’s

are independent and P(Y 2
t � (b2− b1)

2I|X) = 1. As before, applying Theorem 2.3.3, we
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get that for any ǫ > 0,

P(λmax(
1

α

∑

t

Yt) ≤ ǫ|X) > 1− n exp(− αǫ2

8(b2 − b1)2
) for all X ∈ C

By Weyl’s theorem, λmax(
1
α

∑

t Yt) = λmax(
1
α

∑

t(E(Zt|X)−Zt)) ≥ λmin(
1
α

∑

t E(Zt|X))+

λmax(
1
α

∑

t−Zt) = λmin(
1
α

∑

t E(Zt|X))− λmin(
1
α

∑

t Zt) ≥ b3− λmin(
1
α

∑

t Zt) Therefore,

for any ǫ > 0,

P(λmin(
1

α

∑

t

Zt) ≥ b3 − ǫ|X) ≥ 1− n exp(− αǫ2

8(b2 − b1)2
) for all X ∈ C

�

A.4 Proof of Corollary 2.3.5

proof: Define the dilation of an n1×n2 matrix M as dilation(M) :=







0 M ′

M 0






. Notice that

this is an (n1 + n2)× (n1 + n2) Hermitian matrix [25]. As shown in [25, equation 2.12],

λmax(dilation(M)) = ‖dilation(M)‖2 = ‖M‖2 (A.1)

Thus, the corollary assumptions imply that P(‖dilation(Zt)‖2 ≤ b1|X) = 1 for all X ∈ C. Thus,

P(−b1I � dilation(Zt) � b1I|X) = 1 for all X ∈ C. Using (A.1), the corollary assumptions

also imply that 1
α

∑

t E(dilation(Zt)|X) = dilation( 1
α

∑

t E(Zt|X)) � b2I for all X ∈ C. Finally,

Zt’s conditionally independent given X, for any X ∈ C, implies that the same thing also holds

for dilation(Zt)’s. Thus, applying Corollary 2.3.4 for the sequence {dilation(Zt)}, we get that,

P(λmax(
1

α

∑

t

dilation(Zt)) ≤ b2 + ǫ|X) ≥ 1− (n1 + n2) exp(− αǫ2

32b2
1

) for all X ∈ C

Using (A.1), λmax(
1
α

∑

t dilation(Zt)) = λmax(dilation( 1
α

∑

t Zt)) = ‖ 1
α

∑

t Zt‖2 and this gives

the final result. �
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APPENDIX B. Proof of Lemma 3.3.2

proof Let A = I−PP ′. By definition, δs(A) := max{max|T |≤s(λmax(A
′
T AT )−1),max|T |≤s(1−

λmin(A
′
T AT )))}. Notice that A′

T AT = I − I ′T PP ′IT . Since I ′T PP ′IT is p.s.d., by Weyl’s theo-

rem, λmax(A
′
T AT ) ≤ 1. Since λmax(A

′
T AT )− 1 ≤ 0 while 1− λmin(A

′
T AT ) ≥ 0, thus,

δs(I − PP ′) = max
|T |≤s

(1− λmin(I − I ′T PP ′IT )) (B.1)

By Definition, κs(P ) = max|T |≤s
‖I′T P‖2

‖P‖2
= max|T |≤s ‖I ′T P‖2. Notice that

‖I ′T P‖22 = λmax(I
′
T PP ′IT ) = 1− λmin(I − I ′T PP ′IT ) 1, and so

κ2
s(P ) = max

|T |≤s
(1− λmin(I − I ′T PP ′IT )) (B.2)

From (B.1) and (B.2), we get δs(I − PP ′) = κ2
s(P ). �

1This follows because B = I ′
T PP ′IT is a Hermitian matrix. Let B = UΣU ′ be its EVD. Since UU ′ = I ,

λmin(I − B) = λmin(U(I − Σ)U ′) = λmin(I − Σ) = 1 − λmax(Σ) = 1 − λmax(B).
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APPENDIX C. Proof of the Lemmas in Chapter 4

C.1 Proof of Lemma 4.4.10

proof:

1. Since P is a basis matrix, κ2
s(P ) = max|T |≤s ‖IT

′P‖22. Also, ‖IT
′P‖22 = ‖IT

′[P1, P2]

[P1, P2]
′IT ‖2 = ‖IT

′(P1P
′
1 + P2P

′
2)IT ‖2 ≤ ‖IT

′P1P
′
1IT ‖2 + ‖IT

′P2P
′
2IT ‖2. Thus, the in-

equality follows.

2. For any set T with |T | ≤ s, ‖IT
′P̂∗‖22 = ‖IT

′P̂∗P̂ ′
∗IT ‖2 = ‖IT

′(P̂∗P̂ ′
∗−P∗P∗

′+P∗P∗
′)IT ‖2 ≤

‖IT
′(P̂∗P̂ ′

∗ − P∗P∗′)IT ‖2 + ‖IT
′P∗P∗′IT ‖2 ≤ 2ζ∗ + κ2

s,∗. The last inequality follows using

Lemma 2.2.4 with P = P∗ and P̂ = P̂∗.

3. By Lemma 2.2.4 with P = P∗, P̂ = P̂∗ and Q = Pnew, ‖Pnew
′P̂∗‖2 ≤ ζ∗. By Lemma 2.2.4

with P = Pnew and P̂ = P̂new,k, ‖(I−PnewP ′
new)P̂new,k‖2 = ‖(I−P̂new,kP̂

′
new,k)Pnew‖2. For

any set T with |T | ≤ s, ‖IT
′P̂new,k‖2 ≤ ‖IT

′(I−PnewP ′
new)P̂new,k‖2+‖IT

′PnewP ′
newP̂new,k‖2

≤ κ̃s,k‖(I−PnewPnew
′)P̂new,k‖2+‖IT

′Pnew‖2 = κ̃s,k‖(I−P̂new,kP̂
′
new,k)Pnew‖2+‖IT

′Pnew‖2
≤ κ̃s,k‖Dnew,k‖2 + κ̃s,k‖P̂∗P̂ ′

∗Pnew‖2 + ‖IT
′Pnew‖2 ≤ κ̃s,kζk + κ̃s,kζ∗ + κs,new ≤ κ̃s,kζk +

ζ∗ + κs,new. Taking max over |T | ≤ s the claim follows.

4. This follows using Lemma 3.3.2 and the second claim of this lemma.

5. This follows using Lemma 3.3.2 and the first three claims of this lemma.

�

C.2 Simple facts

Let ζ+
k denote the bound on ζj,k for any j. We obtain an expression for ζ+

k later.
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Fact C.2.1 Suppose κ2s,∗ ≤ κ+
2s,∗ = 0.3, κ2s,new ≤ κ+

2s,new
= 0.15, κ̃2s,k ≤ κ̃+

2s = 0.15, and

κs,k ≤ κ+
s = 0.15. Pick ζ as in Theorem 4.3.1 and set ζ+

∗ = (r0 + (j − 1)c)ζ. Then,

1. ζγ∗ ≤
√

ζ

(r0+(J−1)c)3/2 ≤
√

ζ

2. ζ+
∗ ≤ 10−4

(r0+(J−1)c) ≤ 10−4

3. ζ+
∗ γ2

new,k ≤ ζ+
∗ γ2

∗ ≤ 1
(r0+(J−1)c)2 ≤ 1

4. ζ+
∗ γnew,k ≤ ζ+

∗ γ∗ ≤
√

ζ√
r0+(J−1)c

≤ √ζ

5. ζ+
∗ f ≤ 1.5×10−4

r0+(J−1)c ≤ 1.5 × 10−4

6. If ζ+
k−1 ≤ 0.6k−1 + 0.4cζ, then ζ+

k−1γnew,k ≤ (0.6 · 1.2)k−1γnew + 0.4cζγ∗ ≤ 0.72k−1γnew +

0.4
√

ζ√
r0+(J−1)c

≤ 0.72k−1γnew + 0.4
√

ζ

7. If ζ+
k−1 ≤ 0.6k−1 +0.4cζ, then ζ+

k−1γ
2
new,k ≤ (0.6 ·1.22)k−1γ2

new +0.4cζγ2
∗ ≤ 0.864k−1γ2

new+

0.4
(r0+(J−1)c)2 ≤ 0.864k−1γ2

new + 0.4

8. If ζ∗ ≤ ζ+
∗ , ζk ≤ ζ+

k and ζ+
k ≤ 0.6k + 0.4cζ, then

(a) δs(Φ0) ≤ δ2s(Φ0) ≤ κ+
2s,∗

2
+ 2ζ+

∗ < 0.1 < 0.1479

(b) δs(Φk) ≤ δ2s(Φk) ≤ κ+
2s,∗

2
+ 2ζ+

∗ + (κ+
2s,new

+ κ̃+
2s,kζ

+
k + ζ+

∗ )2 < 0.1479

(c) φk ≤ 1
1−δs(Φk) < 1.1735

proof: The first seven items follow directly. The eighth item follows using Lemma 4.4.10. �

C.3 Proof of Lemma 4.4.11

proof:

1. For t ∈ Ij,k, βt := (I − P̂(t−1)P̂
′
(t−1))Lt = D∗,k−1at,∗ + Dnew,k−1at,new. Thus, ‖βt‖2 ≤

ζ∗
√

rγ∗ + ζk−1
√

cγnew,k ≤
√

c0.72k−1γnew +
√

ζ(
√

r + 0.4
√

c) ≤ ξ0. The second last

inequality follows using Fact C.2.1.
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2. By Fact C.2.1 and condition 2 of the theorem, δ2s(Φk−1) < 0.15 <
√

2 − 1. Given

|Tt| ≤ s, ‖βt‖2 ≤ ξ0 = ξ and δs(Φk−1) <
√

2− 1, by Theorem 2.1.1, the CS error satisfies

‖Ŝt,cs − St‖2 ≤ 4
√

1+δ2s(Φk−1)

1−(
√

2+1)δ2s(Φk−1)
ξ0 < 7ξ0.

3. Using the above and the definition of ρ, ‖Ŝt,cs − St‖∞ ≤ 7ρξ0. Since mint |(St)Tt | ≥ Smin

and (St)T c
t

= 0, mint |(Ŝt,cs)Tt | ≥ Smin − 7ρξ0 and mint |(Ŝt,cs)T c
t
| ≤ 7ρξ0. If ω < Smin −

7ρξ0, then T̂t ⊇ Tt. On the other hand, if ω > 7ρξ0, then T̂t ⊆ Tt. Since Smin >

14ρξ0(condition 3 of the theorem) and ω satisfies 7ρξ0 ≤ ω ≤ Smin − 7ρξ0(condition 1 of

the theorem), then the support of St is exactly recovered, i.e. T̂t = Tt.

4. Given T̂t = Tt, the LS estimate of St satisfies (Ŝt)Tt = [(Φk−1)Tt ]
†yt = [(Φk−1)Tt ]

†(Φk−1St+

Φk−1Lt) and (Ŝt)T c
t

= 0 for t ∈ Ij,k. Also, (Φk−1)Tt

′Φk−1 = ITt
′Φk−1 (this follows since

(Φk−1)Tt = Φk−1ITt and Φ′
k−1Φk−1 = Φk−1). Using this, the LS error et := Ŝt −St satis-

fies (4.2). Thus, using Fact C.2.1 and condition 2 of the theorem, ‖et‖2 ≤ φ+(ζ+
∗
√

rγ∗ +

κs,k−1ζ
+
k−1

√
cγnew,k ≤ 1.2(

√
r
√

ζ +
√

c0.15(0.72)k−1 +
√

c0.06
√

ζ) = 0.18
√

c0.72k−1γnew +

1.2
√

ζ(
√

r + 0.06
√

c).

�

C.4 Proof of Lemma 4.4.12

proof: Since λmin(Ak)− ‖Ak,⊥‖2 − ‖Hk‖2 > 0, so λmin(Ak) > ‖Ak,⊥‖2. Since Ak is of size

cnew× cnew and λmin(Ak) > ‖Ak,⊥‖2, λcnew+1(Ak) = ‖Ak,⊥‖2. By definition of EVD, and since

Λk is a cnew × cnew matrix, λmax(Λk,⊥) = λcnew+1(Ak + Hk). By Weyl’s theorem (Theorem

2.2.2), λcnew+1(Ak +Hk) ≤ λcnew+1(Ak)+‖Hk‖2 = ‖Ak,⊥‖2 +‖Hk‖2. Therefore, λmax(Λk,⊥) ≤

‖Ak,⊥‖2 + ‖Hk‖2 and hence λmin(Ak)−λmax(Λk,⊥) ≥ λmin(Ak)−‖Ak,⊥‖2−‖Hk‖2 > 0. Apply

the sin θ theorem (Theorem 2.2.1) with λmin(Ak)− λmax(Λk,⊥) > 0, we get

‖(I − P̂new,kP̂
′
new,k)Enew‖2 ≤

‖Rk‖2
λmin(Ak)− λmax(Λk,⊥)

≤ ‖Hk‖2
λmin(Ak)− ‖Ak,⊥‖2 − ‖Hk‖2

Since ζk = ‖(I − P̂new,kP̂
′
new,k)Dnew‖2 = ‖(I − P̂new,kP̂

′
new,k)EnewRnew‖2

≤ ‖(I− P̂new,kP̂
′
new,k)Enew‖2, the result follows. The last inequality follows because ‖Rnew‖2 =

‖E′
newDnew‖2 ≤ 1. �
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C.5 Key facts for proving Lemmas 4.4.14 and 4.4.15

In this and the next two subsections, we use 1
α

∑

t to denote 1
α

∑

t∈Ij,k
.

Lemmas 4.4.14 and 4.4.15 can be proved using the following facts and Corollaries 2.3.4 and

2.3.5. Under the assumptions of these lemmas, the following are true.

1. Recall from the model (Sec 3.1) and from condition 3 of Theorem 4.3.1 that (i) at,new and

at,∗ are mutually uncorrelated, (ii) ‖at,∗‖2 ≤
√

rγ∗, (iii) for t ∈ Ij,k, ‖at,new‖2 ≤
√

cγnew,k

and ‖at,∗at,new‖2 ≤
√

crγnew,kγ∗.

2. Recall that

(a) f := λ+/λ− where λ+ := maxt λmax(Λt) and λ− := mint λmin(Λt) and so λ+
new,k ≤

λ+, λ−
new,k ≥ λ−

(b) Φ0 = I− P̂∗P̂ ′
∗, Φk−1 = I− P̂∗P̂ ′

∗− P̂new,k−1P̂
′
new,k−1, Dnew,k−1 = Φk−1Pnew, Dnew =

Dnew,0 = Φ0Pnew
QR
= EnewRnew, D∗ = Φ0P∗, ζ∗ = ‖D∗‖, ζk−1 = ‖Dnew,k−1‖ with

ζ0 = ‖Dnew‖.

(c) Conditions 2 and 4 of Theorem 4.3.1 imply that κ2s,∗ ≤ κ+
2s,∗ = 0.3 and κ2s,new ≤

κ+
2s,new = 0.15, κ̃2s,k ≤ κ̃+

2s = 0.15, κs,k ≤ κ+
s = 0.15 and gj,k ≤ g+ =

√
2.

(d) The r.v. Xj,k−1 and the set Γj,k−1 are defined in Lemma 4.4.14.

3. It is easy to see that ‖Φk−1P∗‖2 ≤ ζ∗, ζ0 = ‖Dnew‖2 ≤ 1, Φ0Dnew = Φ′
0Dnew =

Dnew, ‖Rnew‖ ≤ 1, ‖(Rnew)−1‖ ≤ 1/
√

1− ζ2∗ , Enew,⊥
′Dnew = 0, and ‖Enew

′Φ0et‖ =

‖(R′
new)−1D′

newΦ0et‖ = ‖(Rnew)−1D′
newet‖ ≤ ‖(R′

new)−1D′
newITt‖‖et‖ ≤ κ+

s√
1−ζ2

∗

‖et‖. The

bounds on ‖Rnew‖ and ‖(Rnew)−1‖ follows using Lemma 2.2.4 and the fact that σi(Rnew) =

σi(Dnew).

4. Xj,k−1 ∈ Γj,k−1 implies that ζk−1 ≤ ζ+
k−1 and ζ∗ ≤ ζ+

∗ . We prove this below. This, in

turn, implies that

(a) λmin(RnewRnew
′) ≥ 1 − (ζ+

∗ )2. This follows from Lemma 2.2.4 and the fact that

σmin(Rnew) = σmin(Dnew).
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(b) ‖ITt
′Φk−1P∗‖2 ≤ ‖Φk−1P∗‖2 ≤ ζ∗ ≤ ζ+

∗ , ‖ITt
′Dnew,k−1‖2 ≤ κs,k−1ζk−1 ≤ κ+

s ζ+
k−1.

(c) φk−1 := ‖[(Φk−1)Tt

′(Φk−1)Tt ]
−1‖2 ≤ φ+ = 1.2. This follows from Fact C.2.1.

5. P({T̂t = Tt and et satisfies (4.2) for all t ∈ Ij,k}|Xj,k−1) = 1 for all Xj,k−1 ∈ Γj,k−1. We

prove this below. In other words, conditioned on Xj,k−1, T̂t = Tt and et satisfies

et = ITt [(Φk−1)Tt

′(Φk−1)Tt ]
−1ITt

′[(Φk−1P∗)at,∗ + Dnew,k−1at,new]

w.p. one, for all Xj,k−1 ∈ Γj,k−1.

6. The matrices Dnew, Rnew, Enew, D∗, Dnew,k−1, Φk−1 are functions of the r.v. Xj,k−1

(defined in Lemma 4.4.14).

(a) Thus, all terms that we bound in the proof of Lemma 4.4.14 are of the form

1
α

∑

t∈Ij,k
Zt where Zt can be rewritten as either Zt = f1(Xj,k−1)at,∗a′t,∗f2(Xj,k−1)

or Zt = f1(Xj,k−1)at,newa′t,newf2(Xj,k−1) or Zt = f1(Xj,k−1)at,∗a′t,newf2(Xj,k−1) for

some functions f1(.) and f2(.).

(b) Conditioned on Xj,k−1, all terms that we bound in the proof of Lemma 4.4.15 are

also of the above form, whenever Xj,k−1 ∈ Γj,k−1. This follows using item 5 (all

terms that we bound in the proof of this lemma contain et).

7. Xj,k−1 is independent of any at,∗ or at,new for t ∈ Ij,k , and hence the same is true for the

matrices Dnew, Rnew, Enew, D∗, Dnew,k−1, Φk−1 (which are functions of Xj,k−1). Also,

at,∗’s for different t ∈ Ij,k are mutually independent and the same is true for at,new’s for

t ∈ Ij,k.

8. Combining the previous two facts, for Lemma 4.4.14, conditioned on Xj,k−1, the Zt’s

given in item 6 are mutually independent. For Lemma 4.4.15, conditioned on Xj,k−1, the

Zt’s given in item 6 are mutually independent, whenever Xj,k−1 ∈ Γj,k−1.

9. The assumption that ζk−1 ≤ 0.6k−1 + 0.4cζ is combined with Fact C.2.1 to get simple

expressions for the probabilities with which the bounds hold.
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10. The statement “conditioned on r.v. X, the event Ee holds w.p. one for all X ∈ Γ” is

equivalent to “P(Ee|X) = 1, for all X ∈ Γ”. We often use the former statement in our

proofs since it is often easier to interpret.

Proof of item 4: ζk−1 ≤ ζ+
k−1 follows from the definition of Γj,k−1. Also, the definition

implies that ζ1,∗ ≤ r0ζ and ζj′,K ≤ ζ+
K for all j′ ≤ j − 1. Using the definition of K from

Theorem 4.3.1 and using the assumption on ζ+
k , this implies that ζj′,K ≤ 0.6K +0.4cζ ≤ cζ for

all j′ ≤ (j − 1). Using Remark 4.4.4, this implies that ζ∗ ≤ r0ζ + (j − 1)cζ = ζ+
∗ .

Proof of item 5: Xj,k−1 ∈ Γj,k−1 implies that ζk−1 ≤ ζ+
k−1 and ζ∗ ≤ ζ+

∗ = r0 + (j − 1)ζ.

This follows using item 4. By assumption, ζ+
k−1 ≤ 0.6k−1 + 0.4cζ and the four conditions

of Theorem 4.3.1 hold. Thus, conditioned on Xj,k−1, all conditions of Lemma D.1.2 hold as

long as Xj,k−1 ∈ Γj,k−1. Applying Lemma D.1.2, (i) T̂t = Tt for all t ∈ Ij,k; and (ii) for this

duration, et satisfies (4.2), i.e. the claim follows.

C.6 Proof of Lemma 4.4.14

proof: In this proof, we frequently refer to items from the previous subsection, i.e. Sec.

C.5.

Consider Ak := 1
α

∑

t Enew
′Φ0LtLt

′Φ0Enew. Notice that Enew
′Φ0Lt = Rnewat,new+Enew

′D∗at,∗.

Let Zt = Rnewat,newat,new
′Rnew

′ and let Yt = Rnewat,newat,∗′D∗
′Enew

′+Enew
′D∗at,∗at,new

′Rnew
′,

then

Ak �
1

α

∑

t

Zt +
1

α

∑

t

Yt (C.1)

Consider
∑

t Zt =
∑

t Rnewat,newat,new
′R′

new. (a) Using item 8 of Sec. C.5, the Zt’s are

conditionally independent given Xj,k−1. (b) Using item 3, Ostrowoski’s theorem (Theorem

2.2.3), and item 4, for all Xj,k−1 ∈ Γj,k−1,

λmin(E(
1

α

∑

t

Zt|Xj,k−1)) = λmin(Rnew
1

α

∑

t

E(at,newat,new
′)Rnew

′)

≥ λmin(RnewRnew
′)λmin(

1

α

∑

t

E(at,newat,new
′)) ≥ (1− (ζ+

∗ )2)λ−
new,k

(c) Finally, using items 3 and 1, conditioned on Xj,k−1, 0 � Zt � cγ2
new,kI ≤ cmax((1.2)2kγ2

new, γ2
∗)I

holds w.p. one for all Xj,k−1 ∈ Γj,k−1.
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Thus, applying Corollary 2.3.4 with ǫ = cζλ−

24 , we get

P(λmin(
1

α

∑

t

Zt)≥ (1− (ζ+
∗ )2)λ−

new,k −
cζλ−

24
|Xj,k−1)

≥ 1− c exp(− αζ2(λ−)2

8 · 242 ·min(1.24kγ4
new, γ4∗)

) for all Xj,k−1 ∈ Γj,k−1 (C.2)

Consider Yt = Rnewat,newat,∗′D∗
′Enew + Enew

′D∗at,∗at,new
′Rnew

′. (a) Using item 8, the Yt’s

are conditionally independent given Xj,k−1. (b) Using items 3 and 1, E( 1
α

∑

t Yt|Xj,k−1) = 0

for all Xj,k−1 ∈ Γj,k−1. (c) Using items 1, 3, 4 and Fact C.2.1, conditioned on Xj,k−1, ‖Yt‖ ≤

2
√

crζ+
∗ γ∗γnew,k ≤ 2

√
crζ+

∗ γ2
∗ ≤ 2 holds w.p. one for all Xj,k−1 ∈ Γj,k−1. Thus, under the

same conditioning, −bI � Yt � bI with b = 2 w.p. one. Thus, applying Corollary 2.3.4 with

ǫ = cζλ−

24 , we get

P(λmin(
1

α

∑

t

Yt) ≥ −
cζλ−

24
|Xj,k−1)

≥ 1− c exp(− αc2ζ2(λ−)2

8 · 242 · (2b)2 ) for all Xj,k−1 ∈ Γj,k−1 (C.3)

Combining (C.1), (C.2) and (C.3) and using the union bound, P(λmin(Ak) ≥ λ−
new,k(1 −

(ζ+
∗ )2) − cζλ−

12 |Xj,k−1) ≥ 1 − pa(α, ζ) for all Xj,k−1 ∈ Γj,k−1. The first claim of the lemma

follows by using λ−
new,k ≥ λ− and then applying Lemma 2.3.1 with X ≡ Xj,k−1 and C ≡ Γj,k−1.

Now consider Ak,⊥ := 1
α

∑

t Enew,⊥
′Φ0LtLt

′Φ0Enew,⊥. Using item 3,

Enew,⊥
′Φ0Lt = Enew,⊥

′D∗at,∗. Thus, Ak,⊥ = 1
α

∑

t Zt with Zt = Enew,⊥
′D∗at,∗at,∗′D∗

′Enew,⊥

which is of size (n − c) × (n − c). (a) As before, given Xj,k−1, the Zt’s are independent. (b)

Using items 4, 1 and Fact C.2.1, conditioned on Xj,k−1, 0 � Zt � r(ζ+
∗ )2γ2

∗I � ζI w.p. one for

all Xj,k−1 ∈ Γj,k−1. (c) Using items 3, 2, E( 1
α

∑

t Zt|Xj,k−1) � (ζ+
∗ )2λ+I.

Thus applying Corollary 2.3.4 with ǫ = cζλ−

24 , we get

P(λmax(Ak,⊥) ≤ (ζ+
∗ )2λ++

cζλ−

24
|Xj,k−1) ≥ 1−(n−c) exp(−αc2ζ2(λ−)2

8 · 242ζ
) for all Xj,k−1 ∈ Γj,k−1

The second claim follows using λ−
new,k ≥ λ− and f = λ+/λ− in the above expression and then

applying Lemma 2.3.1. �

C.7 Proof of Lemma 4.4.15

proof: In this proof, we frequently refer to items from Sec. C.5.
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The first claim of the lemma follows using item 5 of Sec. C.5 and Lemma 2.3.1.

For the second claim, using the expression for Hk given in Definition 4.4.6, it is easy to see

that

‖Hk‖2≤max{‖Hk‖2, ‖Hk,⊥‖2}+ ‖Bk‖2 ≤ ‖
1

α

∑

t

etet
′‖2 + max(‖T2‖2, ‖T4‖2) + ‖Bk‖2

(C.4)

where T2 := 1
α

∑

t Enew
′Φ0(Ltet

′+etLt
′)Φ0Enew and T4 := 1

α

∑

t Enew,⊥
′Φ0(Ltet

′+et
′Lt)Φ0Enew,⊥.

The second inequality follows by using the facts that (i) Hk = T1− T2 where

T1 := 1
α

∑

t Enew
′Φ0etet

′Φ0Enew, (ii) Hk,⊥ = T3−T4 where T3 := 1
α

∑

t Enew,⊥
′Φ0etet

′Φ0Enew,⊥,

and (iii) max(‖T1‖2, ‖T3‖2) ≤ ‖ 1
α

∑

t etet
′‖2. Next, we obtain high probability bounds on each

of the terms on the RHS of (C.4) using the Hoeffding corollaries.

Consider ‖ 1
α

∑

t etet
′‖2. Let Zt = etet

′. (a) Using item 8, conditioned on Xj,k−1, the

various Zt’s in the summation are independent, for all Xj,k−1 ∈ Γj,k−1. (b) Using items 1,

2, 4, conditioned on Xj,k−1, 0 � Zt � b1I w.p. one for all Xj,k−1 ∈ Γj,k−1. Here b1 :=

(κ+
s ζ+

k−1φ
+√cγnew,k+ζ+

∗ φ+√rγ∗)2. (c) Using items 1, 2, 4, 0 � 1
α

∑

t E(Zt|Xj,k−1) � b2I, b2 :=

(κ+
s )2(ζ+

k−1)
2(φ+)2λ+

new,k + (ζ+
∗ )2(φ+)2λ+ for all Xj,k−1 ∈ Γj,k−1.

Thus, applying Corollary 2.3.4 with ǫ = cζλ−

24 ,

P(‖ 1

α

∑

t

etet
′‖2 ≤ b2+

cζλ−

24
|Xj,k−1) ≥ 1−n exp(−αc2ζ2(λ−)2

8 · 242b2
1

) for all Xj,k−1 ∈ Γj,k−1 (C.5)

Consider T2. Let Zt := Enew
′Φ0(Ltet

′ + etLt
′)Φ0Enew which is of size c × c. Then

T2 = 1
α

∑

t Zt. (a) Using item 8, conditioned on Xj,k−1, the various Zt’s used in the sum-

mation are mutually independent, for all Xj,k−1 ∈ Γj,k−1. Using items 2 and 3, Enew
′Φ0Lt =

Rnewat,new + Enew
′D∗at,∗ and Enew

′Φ0et = (Rnew
′)−1Dnew

′et. (b) Thus, using items 2, 3,

4, 1, it follows that conditioned on Xj,k−1, ‖Zt‖2 ≤ 2b̃3 ≤ 2b3 w.p. one for all Xj,k−1 ∈

Γj,k−1. Here, b̃3 := κ+
s√

1−(ζ+
∗ )2

φ+(κ+
s ζ+

k−1

√
cγnew,k +

√
rζ+

∗ γ∗)(
√

cγnew,k +
√

rζ+
∗ γ∗) and b3 :=

1√
1−(ζ+

∗ )2
(φ+cκ+

s
2
ζ+
k−1γ

2
new,k + φ+√rcκ+

s
2
ζ+
k−1ζ

+
∗ γnew,kγ∗ + φ+√rcκ+

s ζ+
∗ γ∗γnew,k + φ+rζ+

∗
2
γ2
∗).

(c) Also, ‖ 1
α

∑

t E(Zt|Xj,k−1)‖2 ≤ 2b̃4 ≤ 2b4 where

b̃4 := κ+
s√

1−(ζ+
∗ )2

φ+κ+
s ζ+

k−1λ
+
new,k + κ+

s√
1−(ζ+

∗ )2
φ+(ζ+

∗ )2λ+ and



www.manaraa.com

91

b4 := κ+
s√

1−(ζ+
∗ )2

φ+κ+
s ζ+

k−1λ
+
new,k + 1√

1−(ζ+
∗ )2

φ+(ζ+
∗ )2λ+. Thus, applying Corollary 2.3.5 with

ǫ = cζλ−

24 ,

P(‖T2‖2 ≤ 2b4 +
cζλ−

24
|Xj,k−1) ≥ 1− c exp(− αc2ζ2(λ−)2

32 · 242 · 4b2
3

) for all Xj,k−1 ∈ Γj,k−1

Consider T4. Let Zt := Enew,⊥
′Φ0(Ltet

′ + etLt
′)Φ0Enew,⊥ which is of size (n− c)× (n− c).

Then T4 = 1
α

∑

t Zt. (a) Using item 8, conditioned on Xj,k−1, the various Zt’s used in the

summation are mutually independent, for all Xj,k−1 ∈ Γj,k−1. Using items 2, 3, Enew,⊥
′Φ0Lt =

Enew,⊥
′D∗at,∗. (b) Thus, conditioned on Xj,k−1, ‖Zt‖2 ≤ 2b5 w.p. one for all Xj,k−1 ∈ Γj,k−1.

Here b5 := φ+r(ζ+
∗ )2γ2

∗ + φ+√rcκ+
s ζ+

∗ ζ+
k−1γ∗γnew,k This follows using items 2, 4, 1. (c) Also,

‖ 1
α

∑

t E(Zt|Xj,k−1)‖2 ≤ 2b6, b6 := φ+(ζ+
∗ )2λ+.

Applying Corollary 2.3.5 with ǫ = cζλ−

24 ,

P(‖T4‖2 ≤ 2b6 +
cζλ−

24
|Xj,k−1) ≥ 1− (n− c) exp(− αc2ζ2(λ−)2

32 · 242 · 4b2
5

) for all Xj,k−1 ∈ Γj,k−1

Consider max(‖T2‖2, ‖T4‖2). Since b3 > b5 (follows because ζ+
k−1 ≤ 1) and b4 > b6, so

2b6 + cζλ−

24 < 2b4 + cζλ−

24 and 1 − (n − c) exp(−αc2ζ2(λ−)2

8·242·4b25
) > 1 − (n − c) exp(−αc2ζ2(λ−)2

8·242·4b23
).

Therefore, for all Xj,k−1 ∈ Γj,k−1,

P(‖T4‖2 ≤ 2b4 +
cζλ−

24
|Xj,k−1) ≥ 1− (n− c) exp(− αc2ζ2(λ−)2

32 · 242 · 4b2
3

)

By union bound, for all Xj,k−1 ∈ Γj,k−1,

P(max(‖T2‖2, ‖T4‖2) ≤ 2b4 +
cζλ−

24
|Xj,k−1) ≥ 1− n exp(− αc2ζ2(λ−)2

32 · 242 · 4b2
3

) (C.6)

Consider ‖Bk‖2. Let Zt := Enew,⊥
′Φ0(Lt − et)(Lt

′ − et
′)Φ0Enew which is of size (n −

c) × c. Then Bk = 1
α

∑

t Zt. (a) Using item 8, conditioned on Xj,k−1, the various Zt’s

used in the summation are mutually independent, for all Xj,k−1 ∈ Γj,k−1. Using items 2,

3, Enew,⊥
′Φ0(Lt− et) = Enew,⊥

′(D∗at,∗−Φ0et), Enew
′Φ0(Lt− et) = Rnewat,new +Enew

′D∗at,∗ +

(R′
new)−1D′

newet. (b) Thus, conditioned on Xj,k−1, ‖Zt‖2 ≤ b7 w.p. one for all Xj,k−1 ∈ Γj,k−1.

Here b7 := (
√

rζ+
∗ (1+φ+)γ∗ +(κ+

s )ζ+
k−1φ

+√cγnew,k)(
√

cγnew,k +
√

rζ+
∗ (1+ 1√

1−(ζ+
∗ )2

κ+
s φ+)γ∗ +

1√
1−(ζ+

∗ )2
κ+

s
2
ζ+
k−1φ

+√cγnew,k). This follows using items 2, 3, 4, 1.

(c) Also, ‖ 1
α

∑

t E(Zt|Xj,k−1)‖2 ≤ b8 where b8 := (κ+
s ζ+

k−1φ
+ + 1√

1−(ζ+
∗ )2

(κ+
s )3(ζ+

k−1)
2(φ+)2)
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λ+
new,k + (ζ+

∗ )2(1 + φ+ + 1√
1−(ζ+

∗ )2
κ+

s φ+ + 1√
1−(ζ+

∗ )2
κ+

s (φ+)2)λ+ for all Xj,k−1 ∈ Γj,k−1. Thus,

applying Corollary 2.3.5 with ǫ = cζλ−

24 ,

P(‖Bk‖2 ≤ b8 +
cζλ−

24
|Xj,k−1) ≥ 1− n exp(−αc2ζ2(λ−)2

32 · 242b2
7

) for all Xj,k−1 ∈ Γj,k−1 (C.7)

Using (C.4), (D.9), (D.10) and (D.11) and the union bound, for any Xj,k−1 ∈ Γj,k−1,

P(‖Hk‖2 ≤ b9 +
cζλ−

8
|Xj,k−1) ≥ 1− n exp(−αc2ζ2(λ−)2

8 · 242b2
1

)− n exp(− αc2ζ2(λ−)2

32 · 242 · 4b2
3

)

−n exp(−αc2ζ2(λ−)2ǫ2

32 · 242b2
7

) (C.8)

where b9 := b2 + 2b4 + b8,

b9 =((
2(κ+

s )2φ+

√

1− (ζ+
∗ )2

+ κ+
s φ+)ζ+

k−1 + ((κ+
s )2(φ+)2 +

(κ+
s )3(φ+)2

√

1− (ζ+
∗ )2

)(ζ+
k−1)

2)λ+
new,k

+((φ+)2 +
2φ+

√

1− (ζ+
∗ )2

+ 1 + φ+ +
κ+

s φ+

√

1− (ζ+
∗ )2

+
κ+

s (φ+)2
√

1− (ζ+
∗ )2

)(ζ+
∗ )2λ+

=C(ζ+
k−1; ζ

+
∗ )λ+

new,k + O(ζ+
∗ , ζ+

∗ f)λ+ (C.9)

where C(x;u, v) and O(u, v) are defined in Definition 4.4.13. Using λ−
new,k ≥ λ− and f :=

λ+/λ−, b9 + cζλ−

8 ≤ λ−
new,kginc(ζ

+
k−1; ζ

+
∗ , ζ+

∗ f, cζ). Using Fact C.2.1 and substituting κ+
s = 0.15,

φ+ = 1.2, one can upper bound b1, b3 and b7 and show that the above probability is lower

bounded by 1− pc(α, ζ). Finally, applying Lemma 2.3.1, the result follows. �

C.8 Proof of Lemma 4.4.18

proof: Conditions 2, 4 of Theorem 4.3.1 imply that κ2s,∗ ≤ κ+
2s,∗ = 0.3, κ2s,new ≤ κ+

2s,new =

0.15, κ̃2s,k ≤ κ̃+
2s = 0.15, κs,k ≤ κ+

s = 0.15 and gj,k ≤ g+ =
√

2. Using Lemma 4.4.10, this

implies that φk ≤ φ+ = 1.1735. Using Fact C.2.1, ζ+
∗ ≤ 10−4; ζ+

∗ f ≤ 1.5×10−4; and cζ ≤ 10−4.

1. By definition, ζ+
0 = 1. We prove the first claim by induction.

• Base case: For k = 1, ζ+
1 = finc(1; ζ

+
∗ , ζ+

∗ f, cζ) ≤ finc(1; 10
−4, 1.5 × 10−4, 10−4)

< 0.5985 < 1 = ζ+
0 .
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• Induction step: Assume that ζ+
k−1 ≤ ζ+

k−2 for k > 1. Since finc is an increasing

function of its arguments, ζ+
k = finc(ζ

+
k−1; ζ

+
∗ , ζ+

∗ f, cζ) ≤ finc(ζ
+
k−2; ζ

+
∗ , ζ+

∗ f, cζ) =

ζ+
k−1.

2. For the second claim, let θa(x;u, v,w) := 1
x

C(x;u)g+

gdec(x;u,v,w) and θb(x;u, v,w) := 1
cζ

O(u,v)f+0.125w
gdec(x;u,v,w) .

Then, finc(x;u, v,w) = θa(x;u, v,w)x + θb(x, u, v, w)cζ.

• Notice that θa, θb are also increasing functions of all their arguments. Thus,

θa(ζ
+
k−1; ζ

+
∗ , ζ+

∗ f, cζ) ≤ θa(0.5985; 10
−4 , 1.5 × 10−4, 10−4) ≈ 0.4471 < 0.6 and

θb(ζ
+
k−1; ζ

+
∗ , ζ+

∗ f, cζ) ≤ θb(0.5985; 10
−4 , 1.5× 10−4, 10−4) = 0.1598 < 0.16. Thus,

ζ+
k = θa(ζ

+
k−1; ζ

+
∗ , ζ+

∗ f, cζ)ζ+
k−1 + θb(ζ

+
k−1; ζ

+
∗ , ζ+

∗ f, cζ)cζ

≤ 0.6ζ+
k−1 + 0.16cζ

≤ 0.6k−1ζ+
1 + (0.6k−2 + 0.6k−3 + · · ·+ 1)0.16cζ

≤ 0.6k +
0.16cζ

1− 0.6
= 0.6k + 0.4cζ (C.10)

3. Since ζ+
k ≤ 0.5985 and gdec is a decreasing function of its arguments, gdec(ζ

+
k ; ζ+

∗ , ζ+
∗ f, cζ) ≥

gdec(0.5985; 10
−4 , 1.5 × 10−4, 10−4) > 0.

�

C.9 Proof of Lemma 4.4.21

proof: By Lemma 4.4.18, ζ+
k defined in Definition 4.4.17 satisfies ζ+

k ≤ 0.6k + 0.4cζ for

all k ≤ K and gdec(ζ
+
k ; ζ+

∗ , ζ+
∗ f, cζ) > 0. Thus, we can apply Lemma 4.4.16 and Lemma

4.4.15. By Lemma 4.4.16, P(ζk ≤ ζ+
k |Γe

j,k−1) ≥ pk(α, ζ). By Lemma 4.4.15, P({T̂t =

Tt and et satisfies (4.2) for all t ∈ Ij,k}|Γe
j,k−1) = 1. Combining these two facts, P(Γ̃e

j,k|Γe
j,k−1) ≥

pk(α, ζ) for all 1 ≤ k ≤ K.

Since Γe
j,K holds and since ζ+

k ≤ 0.6k + 0.4cζ for all k ≤ K, thus ζ∗ ≤ ζ+
∗ and ζK ≤ ζ+

K ≤

0.6K + 0.4cζ. This is proved in Sec. C.5 (item 4). Using this and applying Lemma 4.4.11, the

last claim follows. �
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APPENDIX D. Proof of the Lemmas in Chapter 5

D.1 Proof of Lemma 5.4.15

The proof follows by using the following three lemmas.

Lemma D.1.1 (Exponential decay of ζ+
k ) Assume that all the conditions of Theorem 5.3.1

hold. Let ζ+
∗ = rζ. Define the series ζk

+ as in Definition 5.4.3. Then,

1. ζ+
0 = 1 and ζ+

k ≤ 0.6k + 0.4cζ for all k = 1, 2, . . . K,

2. the denominator of ζ+
k is positive for all k = 1, 2, . . . K.

proof This lemma is the same as Lemma 4.4.18 but with ζ+
∗ defined differently. �

Lemma D.1.2 (Sparse recovery, support recovery and expression for et) Assume that

all conditions of Theorem 5.3.1 hold.

1. If ζ∗ ≤ ζ+
∗ := rζ and ζk−1 ≤ ζ+

k−1 ≤ 0.6k−1 + 0.4cζ, then for all t ∈ Ij,k, for any

k = 1, 2, . . . K,

(a) the projection noise βt satisfies ‖βt‖2 ≤ ζ+
k−1

√
cγnew,k + ζ+

∗
√

rγ∗ ≤
√

c0.72k−1γnew +

1.06
√

ζ ≤ ξ.

(b) the CS error satisfies ‖Ŝt,cs − St‖2 ≤ 7ξ.

(c) T̂t = Tt

(d) et satisfies (5.3) and ‖et‖2 ≤ φ+[κ+
s ζ+

k−1

√
cγnew,k+ζ+

∗
√

rγ∗] ≤ 0.18·0.72k−1√cγnew+

1.17 · 1.06√ζ

2. For all k = 1, 2, . . . K, P(T̂t = Tt and et satisfies (5.3) for all t ∈ Ij,k|Xj,k−1,0) = 1 for

all Xj,k−1,0 ∈ Γj,k−1,0.
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3. For all k = 1, 2, . . . K, P(T̂t = Tt and et satisfies (5.3) for all t ∈ Ij,k|Γe
j,k−1,0) = 1.

proof The first claim is the same as Lemma 4.4.11 but with ζ+
∗ defined differently. The proof

follows in an analogous fashion. The second claim follows from the first using Remark 5.4.17.

The third claim follows using Lemma 2.3.1. �

Lemma D.1.3 (High probability bound on ζk) Assume that all the conditions of Theo-

rem 5.3.1 hold. Let ζ+
∗ = rζ. Then, for all k = 1, 2, . . . K,

P(ζk ≤ ζ+
k |Γe

j,k−1,0) ≥ pk(α, ζ)

where ζ+
k is defined in Definition 5.4.3 and pk(α, ζ) is defined in Lemma 4.4.16.

proof Using Lemma D.1.1, (i) ζ+
0 = 1 and ζ+

k−1 ≤ 0.6k−1 + 0.4cζ and (ii) the denominator of

ζ+
k is positive. Using this and the theorem’s conditions, the above lemma follows exactly as in

Lemma D.1.1. The only difference is that ζ+
∗ is defined differently. Also, Γj,k := Γj,k,0. The

proof proceeds by first bounding ζk (in a fashion similar to the bound in Lemma D.2.6); using

Lemma D.1.2 to get an expression for et; and finally using Corollaries 2.3.4 and 2.3.5 to get

high probability bounds on each of the terms in the bound on ζk. �

Lemma 5.4.15 follows by combining Lemma D.1.3 and the third claim of Lemma D.1.2 and

using the fact that

P(Γe
j,k,0|Γe

j,k−1,0) = P(ζk ≤ ζ+
k , T̂t = Tt and et satisfies (5.3) for all t ∈ Ij,k|Γe

j,k−1,0)

D.2 Lemmas used to prove Lemma 5.4.16

In this section, we remove the subscript j at most places. The convention of Remark 5.4.14

applies.

D.2.0.1 Showing exact support recovery and getting an expression for et

Lemma D.2.1 (Bounding the RIC of Φk) The following hold.

1. δs(Φ0) = κ2
s(P̂∗) ≤ κ2

s,∗ + 2ζ∗
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2. δs(Φk) = κ2
s([P̂∗ P̂new,k]) ≤ κ2

s(P̂∗) + κ2
s(P̂new,k) ≤ κ2

s,∗ + 2ζ∗ + (κs,new + κ̃s,kζk + ζ∗)2 for

k = 1, 2 . . . K

proof The above lemma is the same as the last two claims of Lemma D.2.1. It follows using

Lemma 3.3.2 and some linear algebraic manipulations. �

Lemma D.2.2 (Sparse recovery, support recovery and expression for et) Assume that

the conditions of Theorem 5.3.1 hold.

1. For all k = 1, 2, . . . ϑ + 1, Xj,K,k−1 ∈ Γj,K,k−1 implies that

(a) ζ∗ ≤ ζ+
∗ := rζ, ζK ≤ cζ, ‖ΦKPj‖2 ≤ (r + c)ζ,

(b) δs(ΦK) ≤ 0.1479 and φK ≤ φ+ := 1.1735

(c) for any t ∈ Ĩj,k,

i. the projection noise βt := (I − P̂(t−1)P̂
′
(t−1))Lt satisfies ‖βt‖2 ≤

√
ζ,

ii. the CS error satisfies ‖Ŝt,cs − St‖2 ≤ 7
√

ζ,

iii. T̂t = Tt,

iv. et satisfies (5.3) and ‖et‖2 ≤ φ+
√

ζ.

2. For all k = 1, 2, . . . ϑ + 1, P(Tt = T̂t and et satisfies (5.3) for all t ∈ Ĩj,k |Xj,K,k−1) = 1

for all Xj,K,k−1 ∈ Γj,K,k−1.

3. For all k = 1, 2, . . . ϑ + 1, P(Tt = T̂t and et satisfies (5.3) for all t ∈ Ĩj,k |Γe
j,K,k−1) = 1.

proof

Claim 1-a follows using Remark 5.4.17. Claim 1-b) follows using claim 1-a) and Lemma

D.2.1. Claim 1-c) follows in a fashion similar to the proof of Lemma 4.4.11. The main difference

is that everywhere we use ΦKLt = ΦKPjat and ‖ΦKPj‖2 ≤ (r + c)ζ. Claim 1-c-i) uses this

and the fact that for t ∈ Ĩj,k, Φ(t) = ΦK , and
√

ζ ≤
√

γ2∗/(r + c)3. Claim 1-c-ii) uses c-i),

√
ζ ≤ ξ (defined in the theorem), δ2s(ΦK) ≤ 0.1479, and Theorem 2.1.1. Claim 1-c-iii) uses

c-ii), the definition of ρ, the choice of ω and the lower bound on Smin given in the theorem.
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Claim 1-c-iv) uses claim c-iii) and Remark 5.4.11. To get the bound on ‖et‖2 we use the first

expression of (5.3), φK ≤ φ+ := 1.1735, and
√

ζ ≤
√

γ2∗/(r + c)3.

Claim 2) is just a rewrite of claim 1). Claim 3) follows from claim 2) by Lemma 2.3.1.

�

D.2.1 A lemma needed for bounding the subspace error, ζ̃k

Lemma D.2.3 Assume that ζ̃k′ ≤ c̃k′ζ for k′ = 1, · · · , k − 1. Then

1. ‖Ddet,k‖2 = ‖Ψk−1Gdet,k‖2 ≤ rζ.

2. ‖Gdet,kGdet,k
′ − Ĝdet,kĜ

′
det,k‖2 ≤ 2rζ.

3. 0 <
√

1− r2ζ2 ≤ σi(Dk) = σi(Rk) ≤ 1. Thus, ‖Dk‖2 = ‖Rk‖2 ≤ 1 and ‖D−1
k ‖2 =

‖R−1
k ‖2 ≤ 1/

√

1− r2ζ2.

4. ‖Dundet,k
′Ek‖2 = ‖Gundet,k

′Ek‖2 ≤ r2ζ2√
1−r2ζ2

.

proof The first claim essentially follows by using the fact that Ĝ1, · · · , Ĝk−1 are mutually

orthonormal and triangle inequality. Recall that Ψk−1 = (I − Ĝdet,kĜ
′
det,k). The last three

claims use this and the first claim and apply Lemma 2.2.4. The last claim also uses the

definition of Dk and its QR decomposition. �

D.2.2 Bounding on the subspace error, ζ̃k

Lemma D.2.4 (Bounding ζ̃k
+
) If

fdec(g̃max, h̃max)−
finc(g̃max, h̃max)

c̃minζ
> 0 (D.1)

then fdec(g̃k, h̃k) > 0 and ζ̃+
k ≤ c̃kζ.

proof Recall that finc(.), fdec(.) are defined in Definition 5.4.3 and ζ̃k
+

:= finc(g̃,h̃)

fdec(g̃,h̃)
. Notice that

finc(.) is a non-decreasing function of g̃, h̃, and fdec(.) is a non-increasing function. Using the

definition of g̃max, h̃max, c̃min given in Assumption 5.1.1, the result follows. �
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Remark D.2.5 If we ignore the small terms of finc(.) and fdec(.), the above condition sim-

plifies to requiring that
3κ+

s,eφ+g̃max+κ+
s,eφ+h̃max

1−h̃max
≤ c̃min

r+c
. Since g̃max ≥ 1, the first term of the

numerator is the largest one. To ensure that this condition holds we need κ+
s,e to be very

small. However, as explained in Sec D.2.3, if we also assume denseness of Dk, i.e. if we

assume κs(Dk) ≤ κ+
s,D for a small enough κ+

s,D, then the first term of the numerator can be

replaced by max(3κ+
s,eκ

+
s,Dφ+g̃max, κ

+
s,eφ

+h̃max). This will relax the requirement on κ+
s,e, e.g.

now κ+
s,e = κ+

s,D = 0.3 will work.

Lemma D.2.6 (Bounding ζ̃k) If λmin(Ãk)− λmax(Ãk,⊥)− ‖H̃k‖2 > 0, then

ζ̃k ≤
‖H̃k‖2

λmin(Ãk)− λmax(Ãk,⊥)− ‖H̃k‖2
(D.2)

proof Recall that Ãk, Ãk,⊥, H̃k are defined in Definition 5.4.6. The result follows by using the

fact that ζ̃k = ‖(I − ĜkĜ
′
k)Dj,k‖2 = ‖(I − ĜkĜ

′
k)EkRk‖2 ≤ ‖(I − ĜkĜ

′
k)Ek‖2 and applying

Lemma 2.2.1 with E ≡ Ek and F ≡ Ĝk. �

Lemma D.2.7 (High probability bounds for each terms in the ζ̃k bound and for ζ̃k)

Assume that the conditions of Theorem 5.3.1 hold. Also, assume that P(Γe
j,K,k−1) > 0. Then,

for all 1 ≤ k ≤ ϑj ,

1. P(λmin(Ãk) ≥ λ−
k (1− r2ζ2 − 0.1ζ)|Γe

j,K,k−1) > 1− p̃1(α̃, ζ) with p̃1(α̃, ζ) given in (D.6).

2. P(λmax(Ãk,⊥) ≤ λ−
k (h̃k + r2ζ2f + 0.1ζ)|Γe

j,K,k−1) > 1 − p̃2(α̃, ζ) with p̃2(α̃, ζ) given in

(D.7).

3. P(‖H̃k‖2 ≤ λ−
k finc(g̃k, h̃k) |Γe

j,K,k−1) ≥ 1− p̃3(α̃, ζ) with p̃3(α̃, ζ) given in (D.12).

4. P(λmin(Ãk)−λmax(Ãk,⊥)−‖H̃k‖2 ≥ λ−
k fdec(g̃k, h̃k) |Γe

j,K,k−1) ≥ p̃(α̃, ζ) := 1− p̃1(α̃, ζ)−

p̃2(α̃, ζ)− p̃3(α̃, ζ).

5. If fdec(g̃k, h̃k) > 0, then P(ζ̃k ≤ ζ̃+
k |Γe

j,K,k−1) ≥ p̃(α̃, ζ)

proof Recall that finc(.), fdec(.) and ζ̃+
k are defined in Definition 5.4.3. The proof of the first

three claims is given in Sec D.2.3. The fourth claim follows directly from the first three using
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the union bound on probabilities. The fifth claim follows from the fourth using Lemma D.2.6.

�

Lemma D.2.8 (High probability bound on ζ̃k) Assume that the conditions of Theorem

5.3.1 hold. Then,

P(ζ̃k ≤ c̃kζ |Γe
j,K,k−1) ≥ p̃(α̃, ζ)

proof This follows by combining Lemma D.2.4 and the last claim of Lemma D.2.7. �

D.2.3 Proof of Lemma D.2.7

proof We use 1
α̃

∑

t to denote 1
α̃

∑

t∈Ĩj,k
.

For t ∈ Ĩj,k, let at,k := Gj,k
′Lt, at,det := Gdet,k

′Lt = [Gj,1, · · ·Gj,k−1]
′Lt and at,undet :=

Gundet,k
′Lt = [Gj,k+1 · · ·Gj,ϑj

]′Lt. Then at := P ′
jLt can be split as at = [a′t,det a′t,k a′t,undet]

′.

This lemma follows using the following facts and the Hoeffding corollaries, Corollary 2.3.4

and 2.3.5.

1. The statement “conditioned on r.v. X, the event Ee holds w.p. one for all X ∈ Γ” is

equivalent to “P(Ee|X) = 1, for all X ∈ Γ”. We often use the former statement in our

proofs since it is often easier to interpret.

2. The matrices Dk, Rk, Ek, Ddet,k,Dundet,k, Ψk−1, ΦK are functions of the r.v. Xj,K,k−1.

All terms that we bound for the first two claims of the lemma are of the form 1
α

∑

t∈Ĩj,k
Zt

where Zt = f1(Xj,K,k−1)Ytf2(Xj,K,k−1), Yt is a sub-matrix of ata
′
t and f1(.) and f2(.)

are functions of Xj,K,k−1. For instance, one of the terms while bounding λmin(Ak) is

1
α̃

∑

t Rkat,kat,k
′Rk

′.

3. Xj,K,k−1 is independent of any at for t ∈ Ĩj,k , and hence the same is true for the

matrices Dk, Rk, Ek, Ddet,k,Dundet,k, Ψk−1, ΦK . Also, at’s for different t ∈ Ĩj,k are mu-

tually independent. Thus, conditioned on Xj,K,k−1, the Zt’s defined above are mutually

independent.
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4. All the terms that we bound for the third claim contain et. Using the second claim of

Lemma D.2.2, conditioned on Xj,K,k−1, et satisfies (5.3) w.p. one whenever Xj,K,k−1 ∈

Γj,K,k−1. Conditioned on Xj,K,k−1, all these terms are also of the form 1
α

∑

t∈Ĩj,k
Zt with

Zt as defined above, whenever Xj,K,k−1 ∈ Γj,K,k−1. Thus, conditioned on Xj,K,k−1, the

Zt’s for these terms are mutually independent, whenever Xj,K,k−1 ∈ Γj,K,k−1.

5. By Remark 5.4.17, Xj,K,k−1 ∈ Γj,K,k−1 implies that ζ∗ ≤ rζ, ζ̃k′ ≤ ck′ζ, for all k′ =

1, 2, . . . k − 1, ζK ≤ ζ+
K ≤ cζ, (iv) φK ≤ φ+ (by Lemma D.2.2); (v) ‖ΦKPj‖2 ≤ (r + c)ζ;

and (vi) all conclusions of Lemma D.2.3 hold.

6. By the clustering assumption, λ−
k ≤ λmin(E(at,kat,k

′)) ≤ λmax(E(at,kat,k
′)) ≤ λ+

k ;

λmax(E(at,detat,det
′)) ≤ λ+

1 = λ+; and λmax(E(at,undetat,undet
′)) ≤ λ+

k+1.

Also, λmax(E(ata
′
t)) ≤ λ+.

7. By Weyl’s theorem, for a sequence of matrices Bt, λmin(
∑

t Bt) ≥
∑

t λmin(Bt) and

λmax(
∑

t Bt) ≤
∑

t λmax(Bt).

Consider Ãk = 1
α̃

∑

t Ek
′Ψk−1LtLt

′Ψk−1Ek. Notice that Ek
′Ψk−1Lt = Rkat,k+Ek

′(Ddet,kat,det

+Dundet,kat,undet). Let Zt = Rkat,kat,k
′Rk

′ and let Yt = Rkat,k(at,det
′Ddet,k

′+at,undet
′Dundet,k

′)Ek+

E′
k(Ddet,kat,det + Dundet,kat,undet)at,k

′Rk
′. Then

Ãk �
1

α̃

∑

t

Zt +
1

α̃

∑

t

Yt (D.3)

Consider 1
α̃

∑

t Zt = 1
α̃

∑

t Rkat,kat,k
′Rk

′. (a) As explained above, the Zt’s are condition-

ally independent given Xj,K,k−1. (b) Using Ostrowoski’s theorem and Lemma D.2.3, for all

Xj,K,k−1 ∈ Γj,K,k−1,

λmin(E(
1

α̃

∑

t

Zt|Xj,K,k−1))=λmin(Rk
1

α̃

∑

t

E(at,kat,k
′)Rk

′)

≥λmin(RkRk
′)λmin(

1

α̃

∑

t

E(at,kat,k
′))

≥ (1− r2ζ2)λ−
k

(c) Finally, using ‖Rk‖2 ≤ 1 and ‖at,k‖2 ≤
√

c̃kγ∗, conditioned on Xj,K,k−1, 0 � Zt � c̃kγ
2
∗I

holds w.p. one for all Xj,K,k−1 ∈ Γj,K,k−1.
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Thus, applying Corollary 2.3.4 with ǫ = 0.1ζλ−, and using c̃k ≤ r, for all Xj,K,k−1 ∈

Γj,K,k−1,

P(λmin(
1

α̃

∑

t

Zt)≥ (1− r2ζ2)λ−
k − 0.1ζλ−|Xj,K,k−1) ≥ 1− c̃k exp(− α̃ǫ2

8(c̃kγ2∗)2
)

≥ 1− r exp(− α̃ · (0.1ζλ−)2

8r2γ4∗
) (D.4)

Consider Yt = Rkat,k(at,det
′Ddet,k

′

+at,undet
′Dundet,k

′)Ek + E′
k(Ddet,kat,det + Dundet,kat,undet)at,k

′Rk
′. (a) As before, the Yt’s are

conditionally independent given Xj,K,k−1. (b) Since E[at] = 0 and Cov[at] = Λt is diagonal,

E( 1
α

∑

t Yt|Xj,K,k−1) = 0 whenever Xj,K,k−1 ∈ Γj,K,k−1. (c) Conditioned on Xj,K,k−1, ‖Yt‖2 ≤

2
√

c̃krγ
2
∗rζ(1 + rζ√

1−r2ζ2
) ≤ 2r2ζγ2

∗(1 + 10−4√
1−10−4

) ≤ 2
r
(1 + 10−4√

1−10−4
) < 2.1 holds w.p. one for

all Xj,K,k−1 ∈ Γj,K,k−1. This follows because Xj,K,k−1 ∈ Γj,K,k−1 implies that ‖Ddet,k‖2 ≤ rζ,

‖Ek
′Dundet,k‖2 = ‖Ek

′Gundet,k‖2 ≤ r2ζ2√
1−r2ζ2

. Thus, under the same conditioning, −bI � Yt �

bI with b = 2.1 w.p. one. Thus, applying Corollary 2.3.4 with ǫ = 0.1ζλ−, we get

P(λmin(
1

α̃

∑

t

Yt) ≥ −0.1ζλ−|Xj,K,k−1) ≥ 1− r exp(− α̃(0.1ζλ−)2

8(̇4.2)2
) for all Xj,K,k−1 ∈ Γj,K,k−1

(D.5)

Combining (D.3), (D.4) and (D.5) and using the union bound, P(λmin(Ãk) ≥ λ−
k (1−r2ζ2)−

0.2ζλ−|Xj,K,k−1) ≥ 1− p̃1(α̃, ζ) for all Xj,K,k−1 ∈ Γj,K,k−1 where

p̃1(α̃, ζ) := r exp(− α̃ · (0.1ζλ−)2

8r2γ4∗
) + r exp(− α̃(0.1ζλ−)2

8(̇4.2)2
) (D.6)

The first claim of the lemma follows by using λ−
k ≥ λ− and applying Lemma 2.3.1 with

X ≡ Xj,K,k−1 and C ≡ Γj,K,k−1.

Consider Ãk,⊥ := 1
α

∑

t Ek,⊥
′Ψk−1LtLt

′Ψk−1Ek,⊥. Notice that

Ek,⊥
′Ψk−1Lt = Ek,⊥

′(Ddet,kat,det + Dundet,kat,undet). Thus, Ãk,⊥ = 1
α̃

∑

t Zt with

Zt = Ek,⊥
′(Ddet,kat,det + Dundet,kat,undet)(Ddet,kat,det + Dundet,kat,undet)

′Ek,⊥ which is of size

(n − c̃k) × (n − c̃k). (a) As before, given Xj,K,k−1, the Zt’s are independent. (b) Conditioned

on Xj,K,k−1, 0 � Zt � rγ2
∗I w.p. one for all Xj,K,k−1 ∈ Γj,K,k−1. (c) E( 1

α

∑

t Zt|Xj,K,k−1) �

(λ+
k+1 + r2ζ2λ+)I for all Xj,K,k−1 ∈ Γj,K,k−1.
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Thus applying Corollary 2.3.4 with ǫ = 0.1ζλ− and using c̃k ≥ c̃min, we get

P(λmax(Ãk,⊥) ≤ λ+
k+1 + r2ζ2λ+ + 0.1ζλ−|Xj,K,k−1) ≥ 1− p̃2(α̃, ζ) for all Xj,K,k−1 ∈ Γj,K,k−1

where

p̃2(α̃, ζ) := (n− c̃min) exp(− α̃(0.1ζλ−)2

8r2γ4∗
) (D.7)

The second claim follows using λ−
k ≥ λ−, f := λ+/λ−, h̃k := λk+1

+/λk
− in the above expres-

sion and applying Lemma 2.3.1.

Consider the third claim. Using the expression for H̃k given in Definition 5.4.6, it is easy

to see that

‖H̃k‖2≤max{‖H̃k‖2, ‖H̃k,⊥‖2}+ ‖B̃k‖2 ≤ ‖
1

α̃

∑

t

etet
′‖2 + max(‖T2‖2, ‖T4‖2) + ‖B̃k‖2

(D.8)

with T2 := 1
α̃

∑

t Ek
′Ψk−1(Ltet

′+etLt
′)Ψk−1Ek and T4 := 1

α̃

∑

t Ek,⊥
′Ψk−1(Ltet

′+et
′Lt)Ψk−1Ek,⊥.

The second inequality follows by using the facts that (i) H̃k = T1− T2 where

T1 := 1
α̃

∑

t Ek
′Ψk−1etet

′Ψk−1Ek, (ii) H̃k,⊥ = T3−T4 where T3 := 1
α̃

∑

t Ek,⊥
′Ψk−1etet

′Ψk−1Ek,⊥,

and (iii) max(‖T1‖2, ‖T3‖2) ≤ ‖ 1
α̃

∑

t etet
′‖2.

Next, we obtain high probability bounds on each of the terms on the RHS of (D.8) using

the Hoeffding corollaries.

Consider ‖ 1
α̃

∑

t etet
′‖2. Let Zt = etet

′. (a) As explained in the beginning of the proof, con-

ditioned on Xj,K,k−1, the various Zt’s in the summation are independent whenever Xj,K,k−1 ∈

Γj,K,k−1. (b) Conditioned on Xj,K,k−1, 0 � Zt � b1I w.p. one for all Xj,K,k−1 ∈ Γj,K,k−1.

Here b1 := φ+2
ζ. (c) Using ‖ΦKPj‖2 ≤ (r + c)ζ, 0 � 1

α

∑

t E(Zt|Xj,K,k−1) � b2I, b2 :=

(r + c)2ζ2φ+2
λ+ for all Xj,K,k−1 ∈ Γj,K,k−1.

Thus, applying Corollary 2.3.4 with ǫ = 0.1ζλ−,

P(‖ 1

α̃

∑

t

etet
′‖2 ≤ b2 +0.1ζλ−|Xj,K,k−1) ≥ 1−n exp(− α̃(0.1ζλ−)2

8 · b2
1

) for all Xj,K,k−1 ∈ Γj,K,k−1

(D.9)

Consider T2. Let Zt := Ek
′Ψk−1(Ltet

′ + etLt
′)Ψk−1Ek which is of size c̃k × c̃k. Then

T2 = 1
α̃

∑

t Zt. (a) Conditioned on Xj,K,k−1, the various Zt’s used in the summation are
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mutually independent whenever Xj,K,k−1 ∈ Γj,K,k−1. (b) Notice that Ek
′Ψk−1Lt = Rkat,k +

Ek
′(Ddet,kat,det + Dundet,kat,undet) and Ek

′Ψk−1et = (R−1
k )′D′

kITt [(ΦK)′Tt
(ΦK)Tt ]

−1ITt
′ΦKPjat.

Thus conditioned on Xj,K,k−1, ‖Zt‖2 ≤ 2b3 w.p. one for all Xj,K,k−1 ∈ Γj,K,k−1. Here, b3 :=
√

rζ√
1−r2ζ2

φ+γ∗. This follows using ‖(R−1
k )′‖2 ≤ 1/

√

1− r2ζ2, ‖et‖2 ≤ φ+
√

ζ and ‖E′
kΨk−1Lt‖2 ≤

‖Lt‖2 ≤
√

rγ∗. (c) Also, ‖ 1
α

∑

t E(Zt|Xj,K,k−1)‖2 ≤ 2b4 where b4 := κs,e(r+c)ζφ+(λ+
k +rζλ++

r2ζ2√
1−r2ζ2

λ+
k+1).

Thus, applying Corollary 2.3.5 with ǫ = 0.1ζλ−, for all Xj,K,k−1 ∈ Γj,K,k−1,

P(‖T2‖2 ≤ 2b4 + 0.1ζλ−|Xj,K,k−1) ≥ 1− c̃k exp(− α̃(0.1ζλ−)2

32 · 4b2
3

)

Consider T4. Let Zt := Ek,⊥
′Ψk−1(Ltet

′+etLt
′)Ψk−1Ek,⊥ which is of size (n− c̃k)×(n− c̃k).

Then T4 = 1
α̃

∑

t Zt. (a) conditioned on Xj,K,k−1, the various Zt’s used in the summation

are mutually independent whenever Xj,K,k−1 ∈ Γj,K,k−1. (b) Notice that Ek,⊥
′Ψk−1Lt =

Ek,⊥
′(Ddet,kat,det + Dundet,kat,undet). Thus, conditioned on Xj,K,k−1, ‖Zt‖2 ≤ 2b5 w.p. one

for all Xj,K,k−1 ∈ Γj,K,k−1. Here b5 :=
√

rζφ+γ∗. (c) Also, for all Xj,K,k−1 ∈ Γj,K,k−1,

‖ 1
α̃

∑

t E(Zt|Xj,K,k−1)‖2 ≤ 2b6, b6 := κs,e(r + c)ζφ+(λ+
k+1 + rζλ+). Applying Corollary 2.3.5

with ǫ = 0.1ζλ−, for all Xj,K,k−1 ∈ Γj,K,k−1,

P(‖T4‖2 ≤ 2b6 + 0.1ζλ−|Xj,K,k−1)≥ 1− (n− c̃k) exp(− α̃(0.1ζλ−)2

32 · 4b2
5

)

≥ 1− (n− c̃min) exp(− α̃(0.1ζλ−)2

32 · 4b2
5

)

Consider max(‖T2‖2, ‖T4‖2). Since b3 = b5 and b4 > b6, so 2b6 + ǫ < 2b4 + ǫ. Therefore,

for all Xj,K,k−1 ∈ Γj,K,k−1,

P(‖T4‖2 ≤ 2b4 + 0.1ζλ−|Xj,K,k−1) ≥ 1− (n− c̃k) exp(− α̃(0.1ζλ−)2

32 · 4b2
3

)

By union bound, for all Xj,K,k−1 ∈ Γj,K,k−1,

P(max(‖T2‖2, ‖T4‖2) ≤ 2b4 + 0.1ζλ−|Xj,K,k−1) ≥ 1− n exp(− α̃(0.1ζλ−)2

32 · 4b2
3

) (D.10)

Notice that if we also introduce an extra denseness coefficient κs,D := maxj maxk κs(Dk),

then P(‖T2‖2 ≤ 2κs,Db4 + 0.1ζλ−|Xj,K,k−1) ≥ 1− c̃k exp(− α̃(0.1ζλ−)2

32·4b23
). Thus,
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P(max(‖T2‖2, ‖T4‖2) ≤ 2max(κs,Db4, b6) + 0.1ζλ−|Xj,K,k−1) ≥ 1 − n exp(− α̃(0.1ζλ−)2

32·4b23
). This

would help to get a looser bounds on g̃max and h̃max in Theorem 5.3.1.

Consider ‖B̃k‖2. Let Zt := Ek,⊥
′Ψk−1(Lt−et)(Lt

′−et
′)Ψk−1Ek which is of size (n− c̃k)× c̃k.

Then B̃k = 1
α̃

∑

t Zt. (a) conditioned on Xj,K,k−1, the various Zt’s used in the summation are

mutually independent whenever Xj,K,k−1 ∈ Γj,K,k−1. (b) Notice that Ek,⊥
′Ψk−1(Lt − et) =

Ek,⊥
′(Ddet,kat,det+Dundet,kat,undet−Ψk−1et) and Ek

′Ψk−1(Lt−et) = Rkat,k +Ek
′(Ddet,kat,det+

Dundet,kat,undet − Ψk−1et). Thus, conditioned on Xj,K,k−1, ‖Zt‖2 ≤ b7 w.p. one for all

Xj,K,k−1 ∈ Γj,K,k−1. Here b7 := (
√

rγ∗ + φ+
√

ζ)2. (c) ‖ 1
α̃

∑

t E(Zt|Xj,K,k−1)‖2 ≤ b8 for all

Xj,K,k−1 ∈ Γj,K,k−1 where

b8 := (r + c)ζκs,eφ
+λ+

k + [(r + c)ζκs,eφ
+ + (r + c)ζκs,e

r2ζ2

√

1− r2ζ2
]λ+

k+1

+[r2ζ2 + 2(r + c)rζ2κs,eφ
+ + (r + c)2ζ2κ2

s,eφ
+2

]λ+

Thus, applying Corollary 2.3.5 with ǫ = 0.1ζλ−,

P(‖B̃k‖2 ≤ b8 + 0.1ζλ−|Xj,K,k−1) ≥ 1− n exp(− α̃(0.1ζλ−)2

32 · b2
7

) for all Xj,K,k−1 ∈ Γj,K,k−1

(D.11)

Using (D.8), (D.9), (D.10) and (D.11) and the union bound, for any Xj,K,k−1 ∈ Γj,K,k−1,

P(‖H̃k‖2 ≤ b9 + 0.2ζλ−|Xj,K,k−1) ≥ 1− p̃3(α̃, ζ)

where b9 := b2 + 2b4 + b8 and

p̃3(α̃, ζ) := n exp(− α̃ǫ2

8 · b2
1

) + n exp(− α̃ǫ2

32 · 4b2
3

) + n exp(− α̃ǫ2

32 · b2
7

) (D.12)

with b1 = φ+2
ζ, b3 :=

√
rζφ+γ∗, b7 := (

√
rγ∗ + φ+

√
ζ)2. Using λ−

k ≥ λ−, f := λ+/λ−,

g̃k := λ+
k /λ−

k and h̃k := λ+
k+1/λ

−
k , and then applying Lemma 2.3.1, the third claim of the

lemma follows. �

D.3 Proof of Lemma D.2.3

proof
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1. The first claim follows because ‖Ddet,k‖2 = ‖Ψk−1Gdet,k‖2 = ‖Ψk−1[G1G2 · · ·Gk−1]‖2 ≤
∑k−1

k1=1 ‖Ψk−1Gk1‖2 ≤
∑k−1

k1=1 ‖Ψk1Gk1‖2 =
∑k−1

k1=1 ζ̃k1 ≤
∑k−1

k1=1 c̃k1ζ ≤ rζ. The first

inequality follows by triangle inequality. The second one follows because Ĝ1, · · · , Ĝk−1

are mutually orthonormal and so Ψk−1 =
∏k−1

k2=1(I − Ĝk2Ĝ
′
k2

).

2. By the first claim, ‖(I − Ĝdet,kĜ
′
det,k)Gdet,k‖2 = ‖Ψk−1Gdet,k‖2 ≤ rζ. By item 2) of

Lemma 2.2.4 with P = Gdet,k and P̂ = Ĝdet,k, the result ‖Gdet,kGdet,k
′−Ĝdet,kĜ

′
det,k‖2 ≤

2rζ follows.

3. Recall that Dk
QR
= EkRk is a QR decomposition where Ek is orthonormal and Rk is

upper triangular. Therefore, σi(Dk) = σi(Rk). Since ‖(I − Ĝdet,kĜ
′
det,k)Gdet,k‖2 =

‖Ψk−1Gdet,k‖2 ≤ rζ and G′
kGdet,k = 0, by item 4) of Lemma 2.2.4 with P = Gdet,k,

P̂ = Ĝdet,k and Q = Gk, we have
√

1− r2ζ2 ≤ σi((I − Ĝdet,kĜ
′
det,k)Gk) = σi(Dk) ≤ 1.

4. Since Dk
QR
= EkRk, so ‖Dundet,k

′Ek‖2 = ‖Dundet,k
′DkR

−1
k ‖2 = ‖Gundet,k

′Ψ′
k−1Ψk−1GkR

−1
k ‖2

= ‖Gundet,k
′Ψk−1GkR

−1
k ‖2 = ‖Gundet,k

′DkR
−1
k ‖2 = ‖Gundet,k

′Ek‖2. Since Ek = DkR
−1
k =

(I − Ĝdet,kĜ
′
det,k)GkR−1

k ,

‖Gundet,k
′Ek‖2 = ‖Gundet,k

′(I − Ĝdet,kĜ
′
det,k)GkR

−1
k ‖2

≤‖Gundet,k
′(I − Ĝdet,kĜ

′
det,k)Gk‖2(1/

√

1− r2ζ2)

= ‖Gundet,k
′Ĝdet,kĜ

′
det,kGk‖2(1/

√

1− r2ζ2)

By item 3) of Lemma 2.2.4 with P = Gdet,k, P̂ = Ĝdet,k and Q = Gundet,k, we get

‖Gundet,k
′Ĝdet,k‖2 ≤ rζ. By item 3) of Lemma 2.2.4 with P̂ = Ĝdet,k and Q = Gk, we

get ‖Ĝ′
det,kGk‖2 ≤ rζ. Therefore, ‖Gundet,k

′Ek‖2 = ‖Ek
′Gundet,k‖2 ≤ r2ζ2√

1−r2ζ2
.

�
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